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1. Introduction

We estimate the effect on household driving of a variety of characteristics that describe urban form

and cities, in particular the density of population and employment surrounding households’ place

of residence. In essence, we are asking how much less (or more) households drive as the area

around their residence changes, in particular, as we make it denser.

We find that urban density has a small causal effect on individual driving. In most of our

estimations ‘urban density’ is the density of residents and jobs within a 10-kilometer radius of

where a driver lives. We find that the elasticity of vehicle kilometers traveled (vkt) with respect

to this measure of density is between -7% and -10%. Put differently, a 10% increase in population

density leads to a 0.7% to 1% decline in driving, all else equal. This result is not sensitive to the

particular measure of density, but is sensitive to the scale at which we measure density. Residents

and employment more than 10 kilometers from a driver’s residence do not have a measurable

effect on driving behavior, nor do other measures of urban form other than density. Note also

that this elasticity of -7 to -10% reflects the net of several effects: (i) higher density reduces trip

distance by making each destination closer, (ii) greater proximity may elicit more trips, and (iii)

higher density increases the unit cost of travel by increasing congestion.

Our first main contribution is to improve the causal identification of the relationship between

urban form and driving. Our econometric framework derives from a simple model of travel

behaviour. As density increases, household travel is subject to countervailing forces. A higher

density makes destinations closer, which reduces household travel distance. In turn, closer des-

tinations lead to more trips and thus an increase in household travel distance. We show that an

implication of this model is that location and household specific unobservables may be correlated

with density and driving.

We pursue a number of strategies to address the issue that households with particular pref-

erences for driving may sort into areas of particular density. Among them, we develop a novel

approach to the sorting problem for a cross-section of residents that follows from an intuitive

definition of sorting and an assumption of imperfect residential mobility. We also use instrumental

variables to address the problem of unobserved local factors correlated with density that may also

affect driving behavior.

Our second main contribution is to combine the best available travel survey data for the us with
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spatially disaggregated national maps that describe, among other things, population density and

demographics, sectoral employment, and land cover. Relative to past literature, which we discuss

below, we thus use more exhaustive data and novel and extensive measures of urban form.

Our third main contribution is to provide some important insights regarding a variety of policy

proposals. First, land use change is a widely proposed policy response to the problem of urban

congestion. For example: in a State of Arizona Department of Transportation professional paper,

Kuzmyak (2012) concludes that "greater adherence to smart growth principles of compact, mixed-

land use,..., may result in important reductions in average trip lengths and vmt [vehicle-miles

traveled] demand on local and regional roads" while the us Department of Transportation states

that "[t]ransportation demand is reduced when residential and commercial uses are planned to be

within close proximity to each other...".1

Changes to urban planning also play a prominent role in policy discussions of carbon abate-

ment. The Fourth Assessment Report of the ipcc discusses land use as a potential policy tool

to reduce the demand for automobile travel (e.g., section 5.5.1.1 of Intergovernmental Panel on

Climate Change, 2007), the more recent Fifth Assessment suggests that "[u]rban Densification in

the usa over about 50 years could reduce fuel use by 9-16%" (table 8.3, Intergovernmental Panel

on Climate Change, 2014), and California’s Senate Bill 375 (September 7, 2006) asserts that "it will

be necessary to achieve significant additional greenhouse gas reductions from changed land use

patterns and improved transportation".

With an elasticity of driving with respect to density of -0.07, our results imply that achieving a

20% reduction in vkt would require a 25-fold increase in density for everyone. Such a policy, which

would require shutting down most of the us territory to human activity, is arguably extreme and

is not politically feasible. More realistic densification policies may instead reallocate population

across areas. This will reduce driving in areas that become denser but it will also increase driving

in areas with declining population. Our estimates suggest that, overall, such policies will cause

only modest decreases in aggregate driving. A comparison of the effects of densification policies

with what is known about the effects of gasoline taxes and congestion prices suggests that densifi-

cation policies are unlikely to be a cost effective way to reduce aggregate driving to reduce traffic

congestion or mitigate driving related carbon emissions.

1http://www.fhwa.dot.gov/planning/processes/land_use/land_use_tools/page02.cfm#toc380582783,
September 17, 2015.
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Three strands of literature are relevant to our inquiry. The first is the large literature on the

relationship between urban form and driving. The second investigates the relationship between

the characteristics of a place and behavior. The third examines the extent to which unobserved

attributes of places affect the way that cities develop in these places.

Urban form and driving

The relationship between urban form and driving has received much attention from the literature

and is the subject of several surveys, including Ewing and Cervero (2001), Handy (2005), Cao,

Mokhtarian, and Handy (2009), Ewing and Cervero (2010), Boarnet (2011), and Stevens (2017). The

primary focus of this literature is relationship between urban form and either total travel distance

by households (e.g., Bento, Cropper, Mobarak, and Vinha, 2005, Brownstone and Golob, 2009) or

the journey to work (e.g., Gordon, Kumar, and Richardson, 1989, Giuliano and Small, 1993, Glaeser

and Kahn, 2004).2

Research typically revolves around estimating the effect on driving behavior of the ’three D’s’

of urban form proposed in Cervero and Kockelman (1997); ’Density’, ’Diversity’ and ’Design’.

That is: the density of residents or employment; the diversity of activity, in particular the extent to

which residential and other uses are mixed; and, usually, characteristics of various transportation

networks. Our data will allow us to investigate two of these three, the density and diversity of

neighborhood population and economic activity, and to touch on the third, the characteristics of

the neighborhood street network.3

The possibility that an individual or household’s location choice may depend on their predis-

position to travel is widely recognized and Cao et al. (2009) survey the econometric techniques

that have been applied to the problem. However, the literature has yet to identify a good source

of random or quasi-random variation in neighborhood choice. To the extent that the literature

implements instrumental variables estimations to deal with sorting, it relies on variables such as

race or housing stock age that seem unlikely to satisfy the relevant exogeneity condition and are

subject to the conceptual problem we describe in section 3. Panel data sets are almost unknown and

those that are available describe small areas and samples. In this light, the approach to the problem

2 The literature has also investigated the relationship between urban form and other travel outcomes, including
pedestrian trips and energy consumption (e.g., Brownstone and Golob, 2009, Glaeser and Kahn, 2008, Blaudin de Thé
and Lafourcade, 2015).

3Subsequent literature has added more ‘D’s’, that further local characteristics such as destination accessibility, dis-
tance to transit, and demand management, which we do not deal with here.
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of sorting that we develop below is an advance. In addition, the possibility that the neighborhood

characteristics of interest may be correlated with unobserved characteristics that affect driving, our

’endogenous density’ problem, is usually ignored.4 Our empirical strategy is also an advance in

this respect.

2. A simple model of urban form and driving

To motivate our empirical analysis, we first present a simple model of equilibrium driving behav-

ior. It focuses on how density affects key tradeoffs in travel decisions and illuminates the inference

problems that our empirical investigation must overcome. Consistent with the regressions below,

we focus on total travel distance by households. This is (arguably) the measure of travel that has

received the most attention from both the academic literature and policy makers because it maps

fairly directly into congestion, local pollution, and carbon emissions.

Consider a location with unit area and population density X. A resident with income W derives

utility from the consumption of a continuum of differentiated varieties Q(.) of measure N and the

numéraire good C,

U = C + θ δ

(∫ N

i=1
Q(i)di

)ρ

, (1)

where θ is a resident-specific term, δ is a location-specific term, and 0 < ρ < 1. To consume a

differentiated variety, the resident must make a dedicated trip. The cost of a unit of variety i is

τD(i) where D(i) is the travel distance to variety i and τ parameterizes the cost of travel.5 We

imagine that restaurants and movie theaters as well as local recreational amenities such as parks

or museums would each constitute a ’variety’ in this context.

Residence in a location requires the consumption of a unit of housing at price Ph. The budget

constraint of a resident is thus C + Ph +
∫ N

i=1 τD(i)Q(i)di = W. To keep the problem tractable

we assume that: (i) there are ‘enough’ varieties so that residents never consume the full set of

available varieties, (ii) varieties can only be consumed in unit quantity Q(i) = 1, and (iii) varieties

are symmetrically located around the resident so that D(i) = D for all varieties i.6 The budget

4Blaudin de Thé and Lafourcade (2015) in an exception.
5We impose an ‘iceberg’ (multiplicative) specification for travel costs to keep the consumer program tractable. This

type of specification is extremely standard to model trade in goods (Head and Mayer, 2014). Its gravity implications
also appear to describe commuting patterns extremely well (Ahlfeldt, Redding, Sturm, and Wolf, 2015).

6Besides imposing convenient functional forms, our simple model also ignores many common features of travel such
as the possibility of chaining trips. In addition, we do not explicitly deal with commutes and other work-related trips.
Some of these complications are addressed in our regressions below. Our priority is to develop a tractable framework
to underpin our regressions and to highlight the key econometric challenges that we face.
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constraint simplifies to C + Ph + NτD = W. Next, we can substitute this budget constraint into

the utility function and simplify to obtain

U(N) = W − Ph + θδ Nρ − NτD . (2)

Assuming income is high enough, the maximization of utility with respect to the number (mass)

of varieties implies the following number of trips,

N =

(
ρθδ

τD

) 1
1−ρ

. (3)

This expression indicates that residents take more trips if they have a greater taste for differentiated

varieties, θ. For instance, some residents may enjoy dining out more than others. More generally,

θ captures an individual resident’s propensity to travel. The number of trips also increases with δ.

For instance, a neighborhood near a nice beach may generate more trips than a neighborhood near

a dirty beach. Our model can capture this by assigning one location a higher value of δ. Residents

also make more trips when they are cheaper. This can occur because the cost of travel, τ, is lower

or because trip distance, D, is shorter. In turn, differences in τ and D across locations arise as

locations differ in how congested they are and in how compact they are. In addition the number of

trips increases with ρ, which measures the (opposite of the) concavity of the utility function with

respect to differentiated varieties.

In this respect, note that our model treats all trips as symmetrical. This assumption is extreme

since leisure trips are arguably more discretionary than commutes. We could easily introduce

compulsory commute trips by subtracting the cost of a commute trip, say τD, from the budget

constraint above. This would leave the optimal number of discretionary trips in equation (3)

unchanged. While this would not change our qualitative conclusions, introducing commutes more

explicitly would lead to much more complicated functional forms below.

We are ultimately interested in how travel distance relates to density around a resident. Total

travel distance by a resident is given by,

Y ≡ N D =

(
ρθδ

τ

) 1
1−ρ
(

1
D

) ρ
1−ρ

, (4)

where the last equality results from the use of equation (3). Like the number of trips, travel distance

also increases with θ and δ and decreases with the unit cost of travel τ and trip distance D. The

latter effect arises because the demand for trips is elastic with respect to trip distance.
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Density at a location affects the demand for travel through a number of channels. A higher

density reduces trip distance through greater accessibility. In turn, this reduces travel distance for

a given number of trips but it also makes trips cheaper and thus elicits more trips. In addition, a

higher density increases the unit cost of travel through more congestion. The net effect of improved

accessibility and increased congestion on travel distance is ambiguous.

More specifically, to model the reduction in travel distance per trip that comes with greater

population density, we assume

D = X−ζ , (5)

where we refer to ζ as the accessibility elasticity.7 We assume a power function for this relationship

(and others below) to preserve analytical tractability. We show in section 4 that the implied log lin-

ear relationship between travel distance and density fits the corresponding empirical relationship

closely.

We expect congestion to depend on aggregate travel in the location. To capture this stylized fact

in our model, suppose that travel costs are

τ =
(
X Y

)φ
, (6)

where Y is mean travel distance and φ measures the elasticity of travel cost per unit with respect

to aggregate travel, which we refer to as the congestion elasticity. Consider a location of unit size

with parameter δ and a cumulative distribution of residents F(θ). Mean travel distance is then

given by Y = 1
X

∫
Y(θ)dF(θ).

By construction, individuals do not account for their impact on τ. Therefore, equilibrium levels

of driving will be greater than socially optimal levels. Even if exogenous changes in density reduce

congestion and increase utility, they do not remove the need for congestion pricing. We return to

this point below.

Our model describes only automobile travel and ignores the possibility that density might affect

mode. This simplifying assumption is motivated by two features of our data. First, as we will see

below, about 89% of all trips are made by a privately-owned vehicle. By excluding non-car travel,

we only exclude a small share of trips. Second, even at high densities, mode choice is not very

sensitive to density. As in our model, our us data suggest that the economically important margin

of adjustment is the amount of driving, not substitution between driving and other modes.

7As accessibility improves residents face both more and closer options. Our formulation reflects this tradeoff, albeit
in a simple, reduced-form manner. See Couture (2014) for micro-foundations.
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After defining θ =
[

1
X

∫
θ1/(1−ρ)dF(θ)

]1−ρ
, an index of the preferences of residents in a location,

using the definition of Y above and inserting equations (5) and (6) into (4) implies

Y = θ
1

1−ρ

(
ρδ

θ
φ

1−ρ

) 1
1−ρ+φ

X−
φ−ζρ

1−ρ+φ , (7)

after simplifications.

This expression shows that if the congestion elasticity, φ, is larger than the product of the acces-

sibility elasticity, ζ, and the utility term, ρ, then travel distance decreases with population density.

Two forces are at play. Travel distance increases with population density because of improved

accessibility. This increase in travel distance also depends on how much the consumption of

differentiated goods that require travel is valued in utility terms. At the same time, the cost of

travelling also increases with density because of rising congestion. It is only when φ > ζρ that

travel distance declines with population density.

Expression (7) describes how total travel distance varies with population density. This our main

counterfactual of interest in our estimations below. In our model, density affects distance traveled

only through travel choices but does so through three margins: the distance to each destination, the

number of destinations, and the cost of travel by unit distance. A richer model would also consider

that density also affects distance traveled indirectly through income effects arising from higher

wages (agglomeration economies) and higher housing costs (diseconomies of scale in construction

and higher land costs).8 While we return to these issues in our policy discussion at the end of this

paper, we focus for now on the direct travel implications of density.

Substituting equations (3)-(7) into the utility function (2) leads to:

U = W − Ph + (1− ρ)(θ δ)
1

1−ρ

( ρ

τD

) ρ
1−ρ

= W − Ph + (1− ρ)ρ
ρ

1−ρ+φ δ
1+φ

1−ρ+φ

(
θ

θ
φρ

1−ρ+φ

) 1
1−ρ

X
ρ

1−ρ+φ (ζ(1+φ)−φ) . (8)

Although density affects utility only through travel behavior and we ignore the complications aris-

ing from the effects of density on the wage W and the cost of housing Ph, the outcome is nonetheless

ambiguous. In equation (8), the coefficient of density, ρ
1−ρ+φ (ζ(1 + φ)− φ), is complicated because

8In practice we expect indirect effects to be small. With a typical elasticity of the wage with respect to density of 4%
(Combes and Gobillon, 2015) and an elasticity of distance travelled with respect to income of about 0.25 as we estimate
below, a 10% increase in density would imply a 0.1% increase in distance travelled, a small fraction of our preferred
estimate. This is consistent with our empirical results below that show only small changes in the estimated density
coefficient when we control for household and local income.
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aggregate travel distance affects individual driving that occurs through congestion, as described

in equation (6). However, the term in τD in the first line of equation (8) makes it clear that utility

increases with density when it reduces trip distance, D, more than it increases unit travel cost, τ.

For ρ < 1, utility increases with density when the accessibility elasticity is large enough, ζ > φ
1+φ .

Next, we note that it is only when the exponent on X is positive in equation (8) and negative in

equation (7) that travel declines while utility increases with density. These two conditions require
φ
ρ > ζ > φ

1+φ . That is, the accessibility elasticity, ζ, must be large enough that utility increases

with density but not so large that travel also increases. It is only when parameters satisfy these

particular conditions that the model both predicts a widely conjectured empirical relationship and

satisfies a necessary condition to rationalize policies to increase population density.

It is also easy to see from equation (8) that ∂2U
∂θ ∂X ≥ 0 when ∂U

∂X ≥ 0. In words, there is a

positive complementarity between the propensity to take trips and population density when utility

increases with population density. This complementarity occurs because, when trips become more

valuable when density increases, they become all the more valuable to households who enjoy

taking trips more.

In section 6, we extend our model to solve for the location choices of residents. In this ex-

tension, we show that the single-crossing condition implied by this complementarity between

the propensity to take trips and density leads to the perfect sorting of residents across locations

of different density. More specifically, residents with a greater propensity to make trips choose

to locate in denser locations. The opposite form of sorting occurs when utility decreases with

density. Hence, in general, we expect a non-zero correlation between the propensity to make trips,

θ, and population density, X, to be a feature of our data.9 Importantly, the direction of the bias

is ambiguous. When increases in population density lead to large improvements in accessibility,

we expect residents with a higher propensity to travel to locate where density is higher. When

increases in population density lead instead to small improvements in accessibility, we expect on

the contrary residents with a higher propensity to travel to locate where density is lower. Hence,

an ols regression of distance travelled on population density may understate or overstate the true

effect of density because of the sorting of residents.

9Aside from the direct channel based on travel preferences that we emphasize here, other forms of residential sorting
could take place, including income sorting as mentioned above. We worry about these alternative forms of sorting only
to the extent that they affect travel behavior. Our empirical approach to residential sorting does not rely on a particular
channel.
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In addition, it is also easy to see that, in general, ∂2U
∂δ ∂X 6= 0. Hence, as we allow households to

choose where to reside, we should also expect a non-zero correlation between how beneficial trips

are in a location, δ, and population density, X.

If residential sorting is perfect in equilibrium, then we must have θ = θ. In fact, we expect

sorting to be less precise than this, and our econometric model relies on the fact that residential

mobility is imperfect. To describe such a process parsimoniously, we instead suppose that θ = θν,

where ν is an error term. Using this relationship in equation (7) and taking logs then gives,

y =
log ρ

1− ρ + φ
− φ− ζρ

1− ρ + φ
x + ε , (9)

where

ε =
log δ

1− ρ + φ
+

1
1− ρ + φ

log θ +
φ

(1− ρ + φ)(1− ρ)
log ν . (10)

and y ≡ log Y and x ≡ log X.

Equation (9) describes a regression of driving on density. This regression, typically conducted

with cross-sectional survey data, forms the basis of the large literature described above. Because

local gains from trips, δ, and the propensity to make trips, θ, are not observed, they enter the

error term. Given their expected correlation with population density, the estimated coefficient of

x is potentially biased. The sorting of travellers and the endogeneity of density are the two main

identification challenges we face in our empirical work below.

3. Econometric model

We would like to estimate the relationship between urban form and driving behavior. We begin

by considering the problem of sorting and then turn to the problem of endogenous urban form.

Each person (household) is assigned to a geographic unit. As we discuss below, these will be

regular grid cells of approximately one kilometer square. For each such unit we construct measures

of urban form, usually a measure of density, which we also discuss below. Let i index individuals

and j index residential locations. We are interested in explaining how driving behavior yij varies

with urban form. More specifically, we are interested in knowing how the driving behavior of a

randomly selected person or household changes when we change urban form in or around their

residential location.

Let x0
j denote the urban form variable of interest for geographic unit j at an initial period

(density in the model above and much of empirical work below), usually around 1990 and let
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x1
j denote the urban form variable of interest usually around 2010, contemporaneous to y. Define

∆xj = x1
j − x0

j . We observe both contemporaneous and historical descriptions of urban form at

each location, but we observe each driver only once.

Suppose that driving for each person is described by the following equation,

yij = θij + βxj + δj, (11)

so that observed driving for each person is determined by an individual specific intercept, θij, a

location specific intercept, δj, and the urban form in person i’s location j, xj. The parameter of

interest, β, measures the effect of local urban form on distance travelled.

We note that this is equivalent to the equilibrium driving equation (9) derived above, where,

in a slight abuse of notation, we renormalize θij and δj to improve legibility. Importantly, in both

equations (9) and (11) individual taste parameters and location specific effects enter only through

the intercept. They do not lead to individual or neighborhood level differences in β, the rate at

which individuals change their behavior in response to density. This simplifies our econometric

task considerably and we appeal to the theoretical analysis above to justify this restriction. This

assumption also finds some empirical support in our results: we perform our main regression on

many different subsamples and do not find measurable differences in β across samples.

Given equation (11), our two main inference problems are that people do not choose their

locations at random and that observed and unobserved attributes of urban form are correlated

with, and may affect driving. We address each problem in turn.

To begin, suppose that individual specific intercepts are not observed, but are drawn from the

real interval Θ, let w denote observable individual characteristics related to location choice and let

the distribution of individual types at each location j be determined by

θij = α0 + α1xj + α2wij + µij, (12)

where µ is a random variable and E(xjµij) = 0. That is, the assignment of types to location j

depends on urban form, on observable individual characteristics, and on unobserved individual

characteristics. If α1 > 0, then drivers with a larger θ sort into neighborhoods with a larger x and

conversely. As µ increases, residents derive more utility from trips for reasons unrelated to x.

Using both equation (12) and (11), we have that

yij = (α0 + α1xj + α2wij + µij) + βxj + δj

= α0 + (α1 + β)xj + α2wij + εij, (13)
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where ε = µ + δ. Thus, if α1 6= 0 or E(εjxj) 6= 0, ols estimates of β will be biased.

Our approach to this sorting problem relies on an assumption of imperfect mobility. We now

consider two time periods t = 0 and t = 1 and suppose that at t = 0 all agents match to locations

as described above. At t = 1 a randomly selected fraction, sj, of these residents relocates and is

replaced by agents who sort on the basis of current conditions. With these assumptions in place,

for a location where x1
j = x0

j + ∆xj, expected driving at t = 1 is

y1
ij = (1− sj)

[
(α0 + α1x0

j + α2wij + µij) + βx1
j + δj

]
+sj

[
(α0 + α1x1

j + α2wij + µij) + βx1
j + δj

]
= α0 + (α1 + β)x0

j + α1sj∆xj + β∆xj + α2wij + εij

= A0 + A1x0
j + A2sj∆xj + A3∆xj + α2wij + εij. (14)

In fact, we will not always observe sj directly. Instead, we observe characteristics that vary

systematically with the mobility rate, e.g., driver age or mean housing tenure in the driver’s home

cell. To understand how this allows similar tests, denote our mobility proxy by s̃ and suppose that

mobility varies with s̃ according to s = g(s̃). Taking a linear approximation, we have s = γ1s̃,

where γ1 6= 0 is assumed. Substituting this expression for s into equation (14) we see that the

coefficient on s̃∆x is αγ1. Substituting into equation (14) gives

y1
ij = A0 + A1x0

j + A2γ1s̃j∆xj + A3∆xj + A4wij + εj. (15)

Equation (15) suggests two parametric tests of the importance of sorting. First, the difference

between the coefficients of x0 and ∆x is α1. This is the parameter that describes how the unobserved

individual propensity to drive varies with urban form in equation (12). Since α1 = A1 − A3,

we can reject the hypothesis that α1 = 0 by rejecting the hypothesis that A1 = A3. Second,

we can reject the hypothesis that α1 = 0 by rejecting the hypothesis that A2γ1 = 0. In fact,

our estimates will generally indicate the A2γ1 is tiny and not significantly different from zero.

However, because this test compounds two structural coefficients, we regard it as less informative

than tests based on the difference A1 − A3. Although they are imprecise, point estimates in our

preferred specification suggest that α1 < 0 and is about one sixth the magnitude of β. That is,

individuals with smaller propensity to drive move to dense places, but this sorting most likely

makes only a modest contribution to the observed relationship between urban form and driving.

This methodology requires two comments. Identification rests on the assumption that as urban

form changes, so do the characteristics of the marginal resident. Not only does this seem like a
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reasonable hypothesis, it also follows a common sense definition of ‘sorting’. While we express the

intuition precisely and in particular functional forms, the underlying intuition seems unrestrictive.

Second, as we have described it, sorting affects only residents moving to a location, not those

moving away from it. More realistically, we might expect a non-random sample of people to move

from a location, and in the case of an increase in density, they should value density less highly than

the average current resident, who in turn should value density less highly the average arrival. We

generalize our framework to describe this intuition precisely in Appendix A. This leads to a similar

empirical strategy.

While the estimation described in equation (15) addresses the problem of sorting by unobserved

individual characteristics, it does not address the possibility of omitted location variables corre-

lated with urban form or changes in urban form. For example, better natural amenities may lead

to a greater concentration of residents as well as to more driving to enjoy them (or go around

them). To address this problem, we consider the system of equations,

yij = θi + βxj + δj , (16)

xj = γ0 + γ1zj + ηj . (17)

In the context of this system, our omitted variables problem may be stated as E(xjδj) 6= 0.

We resolve this problem by relying on instrumental variables estimation. As the system above

suggests, this requires an instrument that predicts urban form but that does not otherwise affect

driving, or more formally, that γ1 6= 0 and E(zjδj) = 0. In our empirical work, we rely on various

measures of subterranean geology as instrumental variables. As we will see, these measures are

important determinants of urban form and it is difficult to imagine other channels through which

they could affect driving behavior than by affecting the urban form.

Although this is a standard instrumental variables estimation, in our context, it requires two

comments. First, we should not expect our instrumental variables estimation to resolve the prob-

lem of sorting. To see this, let x̂j = γ0 + γ1zj and rewrite equation (13) using (17) as,

yij = α0 + (α1 + β)(x̂j + ηj) + εj ,

= α0 + (α1 + β)x̂j + ((α1 + β)ηj) + εj) .

That is, as long as residents sort on the component of the urban form predicted by underground

geology in the same way as they sort on the residual component, the instrumental variables regres-

sion does not lead to unbiased estimates of β. Thus, instrumental variables estimation can solve
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Table 1: Descriptive statistics for NHTS households, MSA sample

Variable Mean Std. Dev. 5th percentile 95th percentile Observations

Vehicles km travelled (VKT) 37,022 29,826 4,459 87,906 99,875
log VKT 10.17 1.01 8.40 11.38 99,875
Annual VKT 33,014 29,766 3,645 82,620 93,602
Odometer VKT 33,123 24,647 6,388 74,483 71,742
Household daily VKT 73.2 66.8 6.5 208.1 83,313
Household daily travel minutes 98.7 70.0 17 234 83,313
Household daily speed 42.6 38.8 13.9 75.6 83,313
Share of trips by POV 0.889 0.456 1 1 93,198
Distance to work 22.5 34.4 1.6 61.6 95,532
10-km density 1,072 1,559 44.9 3,222 99,875
log 10-km density 6.30 1.31 3.81 8.08 99,875
10-km population density 755 1,027 34.7 2,211 99,875
10-km share developed (%) 4.40 5.61 0.07 15.5 99,875

Notes: Authors’ calculations for 2008-2009 (NHTS variables in rows 1-9), 2010 (census variables in rows
10-12), and 2006-2011(NLCD in row 13). Distances are measured in kilometers and monetary values in
current American dollars. Household age is mean age for the adult members of the household. Household
daily VKT, travel time, and speed are computed for all households with positive travel by summing all
trips across the surveyed members of the household. Household speed is computed by dividing VKT by
travel time for each household and averaging across households. ‘Density’ refers to the sum of jobs and
residents unless it is qualified by employment or residential population. All densities are reported per
square kilometer. POV refers to privately-owned vehicles.

the problem of unobserved local characteristics, but it cannot solve the problem of unobserved

individual characteristics.

In light of the intuition above, we would ideally implement our instrumental variables strategy

in the context of equation (15) which explicitly accounts for sorting. In practice, our instruments

are not able to predict changes in urban form, only levels. Thus, in spite of its theoretical appeal,

this strategy is beyond the reach of our data. With this said, the data suggest that neither sorting

nor omitted variables cause economically important biases in our estimates, so we can reasonably

conjecture that allowing these two biases to interact would also be unimportant.

4. Data

Our analysis requires three main types of data; household and individual level travel behavior, a

description of urban form for each household, and finally, a description of subterranean geology.

To implement our response to the sorting problem, we require panel data describing urban form,

but only cross-sectional travel data.
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We also require a way of matching survey respondents to measures of urban form. To ac-

complish this, we construct a regular grid of 990-meter square cells by aggregating the 30-meter

square cells that describe land cover. Each household is matched to the cell which contains the

centroid of the household’s census block group. We will refer to this cell as an individual or

household’s ‘home cell’, and in a slight abuse of language, describe cells as having an area of

one square kilometer.10 We convert all data describing urban form to this resolution as described

below. With this data structure in place, we can construct urban form measures for each household

on the basis of arbitrary geographies by averaging over the relevant sets of grid cells. In particular,

we can examine the square kilometer surrounding each household by reporting the characteristics

of its home cell, we can average over all cells within 10 kilometers of the home cell or over all cells

lying in the same msa.

Data on individual travel behavior come from the 2008-2009 National Household Transporta-

tion Surveys (nhts).11 The nhts reports several measures of total annual driving for each house-

hold or individual in a nationally representative sample of households. Our main dependent

variable is household annual vehicle kilometers travelled (vkt) and is reported in the first row

of table 1.12 This measure of household annual mileage is computed by the survey administrators,

‘bestmiles’, and is their preferred measure. In robustness checks, we consider four other measures

of individual and household driving distance, stated annual vehicle kilometers traveled, a reported

odometer measure of kilometers traveled, individual daily kilometers traveled on the survey day,

and distance to work.

Table 1 reports descriptive statistics for several measures of driving from the nhts. The three

measures of total household driving have sample means of 37,022, 33,014 and 33,123 kilometers

over slightly different samples of households. Except where noted otherwise, we restrict attention

to households and individuals who live in msas.13 Aggregating individual vkt and travel time at

the household level implies that households travel 73.2 kilometers in 98.7 minutes at an average

10Our data are projected onto a flat surface using an Albers Equal Area projection. This projection transforms our
approximately round planet into a plane and preserves area by compressing the North-South dimension of pixels away
from the equator. This preserves pixel area at the expense of pairwise pixel distances. As a practical matter, over the
range of distances we consider, i.e. about 10 kilometers, such cartographic details are not important.

11U.S. Department of Transportation, Federal Highway Administration (2009).
12Our initial nhts sample contains 150,147 households of whom we can locate 149,638 on our grid. We have a positive

measure of vehicle kilometers traveled for 136,530 households. After restricting our sample to those observations for
which we have a full set of household and individual characteristics, we are left with 126,203 households, 99,875 of
whom live in an msa as defined in 1999.

13This is purely for expositional convenience. It allows us to include msa indicator variables in our regressions
without changing our sample.
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speed of 42.6 kilometers per hour.14 Individual distance to work is 22.5 kilometers. These values

reflect the sample of household members who filled out a travel diary reporting positive travel

and those who reported driving to work. We also note that, on average, households conduct 89%

of their trips with a privately-owned vehicle. The transit share represents less than 2%.15

The nhts survey reports household and individual demographics. These demographic vari-

ables provide a description of household race, size, income, educational attainment, and home

ownership status. Mean household income is $71,257 and the average over households of the

average age of household adults is 53.5 years. We also note that nearly 90% of households in our

sample are homeowners.

Urban form data are more complicated. To measure the share of developed land cover, we rely

on the 1992, 2002 and 2006 National Land Cover Data (nlcd).16 While the nlcd reports many

land cover classifications, we sum the urban classes in each year to measure the share of urban

cover in each grid cell. Table 1 reports descriptive statistics for our sample. For an average survey

respondent, 4.40% of the land area within 10 kilometers of their home cell is in urban cover in

2006.17

To assign 2000 census data to our grid cells, we distribute block group data to our grid cells

using an area weighting based on a geocoded map of 2000 census block groups. We perform a

similar exercise for 1990 and 2010.18 With this correspondence between block groups and grid cells

in place, we are able to assign any block group variable reported in the 1990, 2000 or 2010 census

and in the American Community Survey (acs) to our grid.19 All urban form variables involving

demographic characteristics are computed on this basis. Table 1 reports that for an average survey

respondent, the average residential density within a radial distance of 10 kilometers of their home

14This is an average across households. Dividing aggregate vkt by aggregate travel time implies a speed of 44.5
kilometers per hour. Couture, Duranton, and Turner (2018) report a mean speed per trip of 38.5 kilometers per hour.
The differences between those numbers are due to the fact that shorter trips are slower. Averaging across trip gives them
a greater weight than averaging total travel across households. In turn, a household average will also weight shorter
trips more does the ratio of aggregate distance to aggregate travel time.

15Walking represents 8.4% of all trips but only 4.3% of trips longer than one kilometer and less than 0.1% of household
vkt. Biking trips and taxi trips are each less than 1% of trips.

16United States Geological Survey (2000), United States Geological Survey (2011a) and United States Geological
Survey (2011b).

17Note that all densities for rings around a survey respondent’s home are normalized by the number of grid cells
for which we have population and employment information. This prevents us from underestimating density for
households who live by the sea, a lake, or uninhabitable terrain.

18The particular census maps we use are: Environmental Systems Research Institute (1998a), Environmental Systems
Research Institute (2004), U.S. Department of Commerce, U.S. Census Bureau, Geography Division (2010).

19Sources for these data are: Missouri Census Data Center (1990), Missouri Census Data Center (2000), Missouri
Census Data Center (2010) and National Historical Geographic Information System (2010).
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cell is 755 per square kilometer.

Using acs and census tabulations, we also measure a number of other local characteristics such

as an average length of tenure of 10.3 years and a renter share of 26.0%. We use these variables

in estimations below, and note that there is some variation across households in the mobility and

tenure rates of their neighborhoods.

Employment data are based on zipcode business patterns. These data report both aggregate

and sectoral employment by zipcode. We assign these data to our grid on the basis of zipcode

maps using the same procedure that we use for census data.20 We use zipcode business patterns

for the years closest to the nhts survey years, and to reduce measurement error, average over the

nominal year of the survey and the preceding year.

For some of our results, we rely on the 2007 National Highway Planning Network map (Federal

Highway Administration, 2005) to describe the road network. This map is part of the federal

government’s efforts to track roads that it helps to maintain or build. It describes all interstate

highways and most state highways and arterial roads in urbanized areas. To construct measures

of road density, for each grid cell containing a survey respondent, we construct disks of radius

5, 10 and 25 kilometers centered on this cell. For each such disk, we then calculate kilometers of

each type of road network in that disk. In addition to these data we also use the prism gridded

climate data (prism Climate Group at Oregon State University, 2012a,b) to measure temperature

and precipitation in each grid cell.

For much of our analysis, we use the total number of people living or working within 10

kilometers of each survey respondent to measure urban form and call this measure ‘10-kilometer

density’.21 We sometimes also work with the corresponding measure based only on the house-

hold’s home cell and call this measure ’1-kilometer density’. When the scale of analysis is clear,

we sometimes refer to these quantities as ’density’. Table 1 reports that for an average household

survey respondent, the 10-kilometer density is 1,072 per square kilometer. People and jobs tend to

be denser nearer survey respondents’ homes, 1-kilometer density is 1,513.

20Sources for our zipcode maps are: Environmental Systems Research Institute (1998b), U.S. Department of Com-
merce, U.S. Census Bureau, Geography Division (2010).

21In principle, a pixel with many employees and few residents may affect driving behavior of residents differently
than does a pixel with the opposite ratio but same total, so that our aggregated density measure may introduce mea-
surement error. In table 9 we decompose density into its two components and see that the regression R2 is unchanged,
so that, in fact, the more aggregated density measure does not have less ability to explain driving. This suggests that
inference problems introduced by our aggregate measure of density are probably not important.
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Figure 1: The distribution of population conditional on density
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Notes: The dashed black line describes the distribution of people surveyed by the nhts. We
calculate number of nhts people in each cell and then take the share of the total nhts population
living in cells of given densities and represent this on a log scale. The heavy gray line provides
the corresponding information for census population, i.e., for the whole contiguous continental
us. These distributions are based on the whole sample of the nhts for which we record household
vkt, not the msa only sample on which we base most of our regressions and table 1. Dropping
the non-msa observations to be consistent with our regressions only affects the lower tail of the
distribution. The two vertical lines indicate bottom and top density deciles.

Figure 1 presents two probability distribution functions, the fine dashed black line for nhts

sample population and the heavy gray line for census population. Both distributions have a mode

around 8 which, converting from logs to levels, corresponds to a density of about 3,000 per square

kilometer. While the two distributions of census and nhts people are generally close, they diverge

slightly at high densities. This confirms the slightly higher response rates of the nhts in less dense

locations (U.S. Department of Transportation, Federal Highway Administration, 2009).

Panel (a) of figure 2 illustrates the way that people in the us are exposed to our measure of

1-kilometer density. In this map, the white area contains the 10% of the us population living at

the lowest density. This region is about 5.8 million square kilometers and 83% of the land area of

the continental us. On average, the about 30 million people living in this region have 6.25 people

or jobs in their home cell. The barely visible black areas in this map contain the 10% of the us
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Figure 2: Maps

(a) Density deciles of population (b) Aquifers

(c) Earthquake intensity (d) Landslide risk

Notes: Panel(a): White indicates the area inhabited by people living in the bottom decile of density.
Black indicates the area inhabited by people living in the top decile of density. Gray indicates the
area inhabited by the 80% of the people living at intermediate densities. Panel (b): Gray indicates
areas overlying unconsolidated or semi-consolidated aquifers and white indicates the absence
of such aquifers. Panel (c): Darker gray indicates areas subject to larger earthquakes. Panel (d):
Darker gray indicates areas subject to higher landslide risk. 2000 msa boundaries shown in light
gray in all four maps.

population living at the highest densities. This area is less than 1,5000 square kilometers and about

0.2% of the land area of the continental us. On average, residents of these areas share their home

cells with about 5,421 other people and workers. That is, the decile of us population living at

the highest densities lives at densities about 870 times higher than the lowest density decile. The

medium gray area in this figure houses the residual 80% of the population.

In our instrumental variables estimation, we rely on variables constructed from United States

Geological Survey (2001, 2003, 2005). United States Geological Survey (2003) describes the in-

cidence of aquifers in the continental us. Using this map, we determine which grid cells overlay
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consolidated or semi-consolidated aquifers. Panel (b) of figure 2 illustrates these pixels. Burchfield,

Overman, Puga, and Turner (2006) find that an msa level index of aquifer prevalence is a good

predictor of an aggregate measure of urban form. We will also find aquifers are good predictors of

local density. Usefully, the map indicates that aquifers are broadly distributed across the country

so that instrumental-variables estimates will not be driven by variation within particular small

regions. United States Geological Survey (2005) describes a measure of earthquake intensity that

ranges from 0 to 18. We consolidate to three categories; low, medium or high earthquake exposure.

Panel (c) of figure 2 illustrates these regions. Areas of high earthquake intensity are dark. United

States Geological Survey (2001) describes landslide susceptibility. The source data contains six

categories, which we consolidate to low, medium and high risk. Panel (d) of figure 2 illustrates

high risk areas in dark gray, medium risk areas in light gray and low risk areas in white. Like the

aquifers map, neither landslide nor earthquake risk are concentrated in small geographic areas so

that instrumental variables estimates based on these variables are not driven by small regions of

the country.

Figure 3: Vehicle-kilometers traveled and density

7
8

9
10

11
m

ea
n 

lo
g 

VK
T 

pe
r p

er
so

n

-5 0 5 10 15
log Density 1km

Notes: We first calculate mean per person vkt for each home cell by dividing household driving
by the count of household members. We then calculate mean vkt conditional on density as density
varies. Both axes are in log scale.

Bringing together our data about travel behavior and urban form, figure 3 describes mean per
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person driving as a function of density. Except for extremely high or extremely low levels of

density, the logarithmic scale of the figure shows a clear log linear trend. On this basis, we rely

on multiplicative rather than additive regression equations. The far left part of the figure is noisy

but this occurs for levels of log density below 2 and concerns less than 1% of the observations for

our preferred sample of households that live in msas. The far right part of the figure is also noisy

but, again, less than 1% of our observations live at a log density above 9. Indeed, only about 260

cells have a log density above 10 and of these, about two thirds are in the New York msa. Despite

this noise, the figure suggests that the effect of density on driving may increase at very high levels

of density. We will look for this sort of non-linearity in our regressions but recall that these areas

represent a tiny part of the country that may differ from the rest in many ways other than density.

5. Results

We proceed in steps. First, we present ols results showing the relationship between our preferred

measures of driving and urban form, household vkt and the density of residents and jobs within

10 kilometers. Second, we verify that these relationships are robust to different measures of driving

and to the scale at which we calculate the urban form variable. Third, we consider the problems

of sorting and endogeneity. Finally, we investigate other measures of urban form and examine the

extensive margin of travel.

A OLS estimations

Table 2 reports the results of ols regressions of driving on urban form in us msas. Our unit of

observation is a household described by the 2008 nhts. In every column, our dependent variable

is the log of household vkt, reported in the second row of table 1. In all specifications, our measure

of urban form is the log of 10-kilometer density, also as described by table 1.

In column 1, we regress log annual household vkt on the log of density to find an elasticity

of -8.7%. Households in locations with a 10% higher density drive 0.87% less and a one-standard

deviation increase in density within 10 kilometers is associated with a 0.11 standard deviation

decrease in vkt. At the sample mean, this represents about 3,300 kilometers annually. Because

the estimated coefficient of density is stable across specifications, these magnitudes are relevant to

most of the tables presented below. We also note that this elasticity is within the range of values
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Table 2: Driving and density, baseline OLS estimations

(1) (2) (3) (4) (5) (6) (7) (8)

log 10-km density -0.087a -0.098a -0.089a -0.093a -0.091a -0.12a -0.082a -0.075a

(0.0024) (0.0020) (0.0083) (0.0089) (0.013) (0.0075) (0.0051) (0.0050)
White/Asian 0.019b 0.020c 0.024b 0.020b

(0.0088) (0.0100) (0.0094) (0.0090)
Share female -0.26a -0.26a -0.26a -0.26a

(0.010) (0.012) (0.011) (0.010)
log household size 0.49a 0.49a 0.49a 0.49a

(0.011) (0.011) (0.011) (0.012)
Single -0.24a -0.24a -0.24a -0.24a

(0.012) (0.013) (0.013) (0.013)
Age 0.045a 0.044a 0.044a 0.044a

(0.0010) (0.00099) (0.00098) (0.0011)
Age2 (/1000) -0.51a -0.50a -0.50a -0.50a

(0.0098) (0.0095) (0.0097) (0.010)
log income 0.26a 0.25a 0.25a 0.25a

(0.0043) (0.0054) (0.0053) (0.0050)
Education 0.10a 0.095a 0.092a 0.091a

(0.016) (0.014) (0.014) (0.016)
Education2 -0.014a -0.012a -0.012a -0.011a

(0.0024) (0.0020) (0.0020) (0.0024)
log precipitation -0.015 0.051 -0.13b -0.060

(0.053) (0.042) (0.057) (0.079)
log precipitation sd 0.025 -0.036 0.11c 0.090

(0.069) (0.049) (0.063) (0.076)
Temperature 0.062b 0.049b -0.080 -0.021

(0.028) (0.024) (0.060) (0.039)
Temperature sd -0.043b -0.033c 0.052 0.014

(0.019) (0.017) (0.040) (0.027)
Share higher educ. -0.50a -0.18 -0.25a -0.30a

(0.072) (0.11) (0.078) (0.071)
Share higher educ2 -0.020 -0.20b -0.21b -0.12

(0.080) (0.092) (0.091) (0.073)
log local income 0.68a 0.18a 0.23a 0.22a

(0.014) (0.033) (0.014) (0.015)

R2 0.01 0.36 0.01 0.05 0.37 0.02 0.37 0.36
Observations 99,875 99,875 99,875 99,875 99,875 99,875 99,875 99,874

Notes: The dependent variables is log household VKT in all columns. All regressions include a constant
including MSA fixed effects in columns 6 and 7 (275 MSAs) and county fixed effects in column 8 (837
counties). Robust standard errors in parentheses, clustered by MSA in columns 3-7, and by county in
column 8. a, b, c: significant at 1%, 5%, 10%.

21



estimated by past literature. Perhaps because we measure density more precisely, our elasticity

is slightly larger in absolute value than the typical values of -4 to -5% estimated previously (e.g.,

Handy, 2005, Ewing and Cervero, 2010) as measurement error biases linear regression coefficients

towards zero.

In column 2, we add household characteristics to our specification and estimate a slightly larger

effect of density on household vkt, with an elasticity of -9.8%. White and Asian households drive

about 2% more. Female households drive less. The coefficient of -0.26 implies that a single female

is predicted to drive 23% less on average than a single male. Large households also drive more,

but not proportionately so. The coefficients on log household size and the indicator for one-person

households show that two-person households will drive about 30% more than one-person house-

holds. We also observe that vkt is concave in age. At age 20, an extra year of age is associated

with 2% more driving. Then, vkt peaks around the age of 45 before declining. The elasticity of vkt

with respect to income is large at around 26%. vkt increases with education (which is coded 1 to 5)

for low levels of educational achievement and then decreases for the most educated households.

Because the coefficients on households’ characteristics are stable across specifications, we do not

report or discuss them for subsequent tables.

In column 3, we consider geographic characteristics. Relative to column 1, the coefficient on

density changes little. The results of this column indicate that vkt is higher where temperature is

on average higher and varies less over the year. We find no significant effect of precipitation or

its variation over the year. In other specifications like in column 7, we sometimes find that vkt is

higher in places with less precipitation and more variation over the year.

In column 4, we consider neighborhood socio-economic characteristics. We find that driving

declines with the share of university educated workers and increases with average local income.

Because richer neighbourhoods are also on average denser, the coefficient on density also increases

marginally in magnitude relative to the one estimated in column 1. In column 5, we consider all

the controls together and estimate an elasticity of vkt with respect to density of -9.1%. Relative

to column 4, we note that the magnitudes of neighbourhood characteristics drop sharply and lose

significance. This is unsurprising. Richer and more educated households tend to live in richer

and more educated neighbourhoods and the resulting co-linearity makes it difficult to separately

estimate the effects of household and neighborhood income. We also note that despite the strong

effects of neighbourhood and households characteristics, the coefficient on density barely changes.
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This is because these characteristics are only either modestly or weakly correlated with density

and some cases, such as with education and income, their effects offset each other.

In column 6, we return to the specification of column 1 but also include a fixed effect for each

Metropolitan Statistical Area (msa). Estimating the elasticity of vkt with respect to density within

msas yields a coefficient modestly larger in magnitude relative to column 1. This is because richer

and more educated households, both drive more and tend to locate in denser msas. Consistent

with this, including all the household, geographic, and neighbourhood characteristics in column

7 gives a coefficient on density close to that of column 5. This indicates that the between- and

within-msa variations in density are associated in a similar way with driving. We also note that

despite the extra fixed-effects, the fit of the regression does not improve. We confirm below the lack

of empirical content of these msa fixed effects and provide more evidence that it is only the density

surrounding households’ residential location that determines their driving. The specification of

column 7 is our benchmark ols specification.22 Finally, column 8 introduces a fixed effect for

each of the 837 counties where metropolitan households are located. At -0.075, the coefficient on

local density is marginally lower but statistically indistinguishable from our preferred coefficient

in column 7 or from the coefficient obtained in column 1, the simplest estimation.

Our choice of explanatory variables in table 2 controls for obvious determinants of household

travel, like household demographics or the geography of where they live. We also include controls

for the neighborhood socio-economic characteristics, in spite of the fact they are maybe correlated

with urban form and capture some of its effect. Given our concern about the sorting of households

on the basis of unobserved tastes for driving, we prefer the larger set of control variables.23 As it

turns out, once we control for basic household demographics, including further controls does not

measurably affect the coefficient of urban form.

We postpone more detailed analysis, but we note that the elasticity of distance traveled with

respect to density seems economically small. In table 2, 10% increase in density corresponds to a

less than 1% decline in distance traveled. Over the period 1990 to 2010, in only 1% of pixels housing

22In alternative specifications we also used the distance to the cbd as explanatory variable. Adding it in log to the
specification of column 7 makes the coefficient on density marginally smaller in absolute value at -0.074. The elasticity
of vkt with respect to distance to the cbd is small at 0.015.

23We experimented with many characteristics and included all those that are ‘often’ significant in the preliminary
regressions we estimated. For instance, we include an indicator variables for households that are white or Asian. As can
be seen in table 2 below, this variable is often significant but the magnitude of its effects is small. We grouped white and
Asian households because differences between them were minimal. Similarly we grouped all other minorities together
because the differences between them were also minimal.
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Table 3: Robustness of baseline OLS estimations to measures of travel

(1) (2) (3) (4) (5) (6) (7) (8)
Dependent: stated odometer ind. day dist. to ind. day speed number mean trip
variable: km km km work minutes of trips distance

log 10-km density -0.11a -0.095a -0.13a -0.18a -0.026a -0.11a 0.014a -0.15a

(0.0054) (0.0055) (0.0066) (0.0097) (0.0036) (0.0040) (0.0020) (0.0061)

R2 0.42 0.43 0.18 0.11 0.12 0.14 0.33 0.10
Observations 93,602 71,742 83,313 86,387 85,996 82,849 83,313 83,313

Notes: All regressions include controls for household demographics, geography, local socio-economic
characteristics, and MSA fixed effects. Robust standard errors clustered by MSAs in parentheses. a, b, c:
significant at 1%, 5%, 10%. The dependent variables and explanatory variables of interest are in log in all
columns except for the number of trips in column 7. Demographic controls include a white/Asian
indicator, log income, log household size, a single indicator, age, age squared, gender, education, and
education squared. Geographic controls include average precipitation and its standard deviation, and
average temperature and its standard deviation. Local socio-economic controls include the share of
residents with higher education and its square and log local income.

an nhts respondent does density increase by more than a factor of 4.8. Given the coefficient of

-0.082 estimated in column 7 of table 2, this implies that if the density of every residential location

were to increase by this factor the corresponding decline in distance traveled is only of about 12%.

B Robustness to measure of driving and urban form

In table 3 we assess the stability of the results of table 2 as we vary our dependent variable. In each

column of this table we estimate a specification similar to that of column 7 of table 2, with controls

for households’ demographics, neighbourhood socio-economic characteristics, and geography as

well as a full set of msa fixed effects. In column 1, we replace our preferred measure of vkt with

a stated measure of vkt. We find a density elasticity of -11% instead of -8.2%. Measuring vkt

through odometer readings by households in column 2, we estimate a density elasticity of -9.5%.

Using a measure of daily vkt for individual drivers aggregated at the household level in column

3, the elasticity is again slightly larger at -13%. Using instead, distance to work in column 4 yields

an even larger elasticity of -18%.

These elasticities for alternative measures of kilometers traveled are estimated on slightly dif-

ferent samples of households. In supplemental results we restrict attention to the about 37,000

households for whom we observe our preferred measure of travel and the four alternatives from

columns 1-4 of table 3, we find the following elasticities: -9.2% for our preferred measures of travel,
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-12% for stated miles, -11% for odometer miles, -14% for daily travel, and -18% for distance to work.

The differences from the corresponding elasticities reported in tables 2 and 3 are small.

We find some differences across different measures of travel, but note that these differences

are small and that these measures are conceptually distinct. For instance, daily vkt is measured

at the individual level whereas odometer vkt is measured for vehicles regardless of the number

of household members who travel. Distance to work is more sensitive to local density. This is

not surprising because commutes often take place when congestion is at its worst. Importantly,

commutes represent 27% of household vkt and the density elasticity is -18% for commute distance.

Hence, commutes account for (0.27× 0.18)/0.092 ≈ 53% of the density elasticity of -9.2% that we

estimate for all travel.

In column 5, our dependent variable is a measure of travel time, household daily travel minutes,

that corresponds to kilometers traveled in column 3 and is directly measured by the survey. For

this measure of travel time, we estimate an elasticity of -2.6%, much lower than for travel distance.

In column 6, we use travel speed as the dependent variable and estimate an elasticity of -11%.24

Although residents in denser locations travel fewer kilometers, their travel time is only marginally

lower because travel is slower. In column 7, we use the number of trips as the dependent variable

and estimate a small positive density elasticity of 1.4%. Finally, in column 8, we estimate an

elasticity of mean trip distance to 10-kilometer density of -15%. This shows that the lower vkt

of residents in denser locations is exclusively explained by shorter trips not by fewer trips. If

anything, residents of denser locations tend to travel more often.

In table 4, we assess the stability of the results of table 2 as we vary our explanatory variable of

interest. In column 1, we use 1-kilometer density to measure urban form instead of 10-kilometer

density. Relative to the -8.2% elasticity we estimate with 10-kilometer density, the estimate here

is modestly lower at -6.7%. Columns 2 and 3 use the number of residents and the number of jobs

within a 10 kilometer radius to estimate comparable elasticities. We estimate a smaller elasticity

in column 4 when using the share of developed land within a 10 kilometer radius as measure of

urban form. We return to these measures below when we consider several measures of urban form

in the same regression.

24Although our approach is very different from that developed in Couture et al. (2018), they estimate a comparable
elasticity of travel speed with respect to population of -13% across the largest 100 us msas.
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Table 4: Robustness of baseline OLS estimations to measure of density

(1) (2) (3) (4) (5) (6) (7) (8)
Sample restriction None None None None No NY No high Non-MSA No high-

density HH VKT HH

Urban form: 1-km 10-km 10-km 10-km 10-km 10-km 10-km 10-km
density pop. den. emp. den. land cover density density density density
-0.067a -0.083a -0.065a -0.055a -0.080a -0.078a -0.081a -0.067a

(0.0036) (0.0052) (0.0046) (0.0033) (0.0045) (0.0035) (0.0046) (0.0050)

R2 0.37 0.37 0.37 0.36 0.37 0.37 0.38 0.34
Observations 99,875 99,875 99,870 99,423 94,970 74,864 26,328 90,662

Notes: All regressions include controls for household demographics, geography, local socio-economic
characteristics, and MSA fixed effects. Robust standard errors clustered by MSAs in parentheses. a, b, c:
significant at 1%, 5%, 10%. The dependent variables and explanatory variables of interest are in log in all
columns. Demographic controls include a white/Asian indicator, log income, log household size, a single
indicator, age, age squared, gender, education, and education squared. Geographic controls include
average precipitation and its standard deviation, and average temperature and its standard deviation.
Local socio-economic controls include the share of residents with higher education and its square and log
local income.

In columns 5 to 8, we consider various sample restrictions to confirm that our results are not

driven by a small subgroup of locations or drivers. In column 5, we estimate our preferred ols

estimation of column 7 of table 2 without the New York msa. Although travel behavior in New

York is dramatically different from the rest of the country in many ways, surprisingly, the elasticity

of vkt with respect to density is unchanged when we exclude it. In results not reported here, we

estimate the same specification for only the New York msa and obtain an elasticity of -14%. In

column 6, we eliminate all observations in the top density quartile and still estimate an elasticity

of -7.8%. In column 7, we consider only the non-msa residents who are excluded from most of

our specifications and estimate an elasticity of -8.1%. Finally, in column 8, we eliminate the 10%

of households with the highest vkt. Collectively, these households are responsible for more than

20% of aggregate vkt. As these high vkt households are more often located in low density areas,

we are bound to estimate a lower elasticity of vkt with respect to density. We do but, interestingly,

the change is modest. We still estimate an elasticity of -6.7%.

Overall, these results suggest that our findings are broadly consistent across a variety of mea-

sures of driving and locations, but that particular measures of driving may be more or less sensitive

to urban form.
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C Sorting

We now turn attention to the possibility that households and individuals in dense areas are differ-

ent from those in less dense areas.

Prior investigations of urban form and driving considered the possibility of sorting into high-

density residential areas in the context of Heckman selection models (see in particular Cao et al.,

2009, for a full survey devoted to this type of estimation in our context). We report some results

in Appendix B and note that this type of approach estimates coefficients for density that are

only modestly larger in magnitude. However, a problem with this type of estimation is that it

is not based on an exclusion restriction. That is, identification does not rely on a variable that

would explain residential density but be otherwise uncorrelated with vkt. Instead, the possible

sorting of households into high-density neighborhoods is identified entirely from assumptions

about functional form. As a result, it is unclear how we should interpret the elasticities of vkt with

respect to density estimated with this type of approach.

Our second approach to selection also follows standard ideas in the literature. In table 2, we

control for an increasingly rich set of observable individual characteristics. Intuitively, if such

controls change the estimate of the coefficient of interest, then we worry that other unobserved

variables might also be important. We see in table 2 that this does not occur. Oster (2017) refines

this intuition and points out that observed control variables do not generally inform us about the

importance of unobserved controls unless the observed controls improve the R2 of the regression.

In addition, Oster (2017) provides a parametric test for bias caused by sorting on unobservables,

conditional on an assumption about the extent to which unobserved controls are ‘like’ observed

controls. In a nutshell, this test compares the coefficient of interest and the R2 of a regression with

added controls to one without. It rejects sorting when the difference between the two estimated

coefficients of interest is small relative to the change in R2. Performing this test on the regressions

of columns 2 and 5 suggests that unobserved controls must behave very differently from observed

controls in order to bias our estimates while columns 3 and 4 are uninformative about this issue.

Our third strategy for addressing the possibility of sorting revolves around variants of equation

(15). Equation (15) can be implemented by regressing household vehicle-kilometers traveled on

three explanatory variables of interest; the 1990 level of the density within 10 kilometers, the

change in this measure between 1990 and 2010, and the interaction of the change in density and a

measure of mobility. Consistent with the discussion of section 2, we proxy for the mobility rate in
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Table 5: Selection and mobility using information about local mobility measured through the
tenure length of local residents

(1) (2) (3) (4) (5) (6) (7) (8)
Period 90 to 10 90 to 10 90 to 10 90 to 10 90 to 10 90 to 10 00 to 10 00 to 10
Household sample All All All Big ∆ Small ∆ Age <50 All All

Initial log 10-km density -0.080a -0.075a -0.046a -0.084a -0.069a -0.080a -0.076a -0.076a

(0.0052) (0.0055) (0.014) (0.0073) (0.0060) (0.0072) (0.0055) (0.0054)
∆ log 10-km density -0.12a -0.063b -0.030 -0.061 -0.056 -0.033 -0.014 -0.014

(0.025) (0.029) (0.033) (0.054) (0.060) (0.035) (0.043) (0.044)
Mobility ×∆ log density 0.0077b -0.0033 -0.00059 0.0014 -0.0048 0.0023 -0.00014 -0.00014

(0.0034) (0.0036) (0.0038) (0.0067) (0.0072) (0.0044) (0.0057) (0.0057)
Mobility rate -0.0099a -0.040a -0.0056 -0.016a -0.010a -0.010a -0.010a

(0.0029) (0.013) (0.0043) (0.0044) (0.0033) (0.0027) (0.0027)
Mobility × log density 0.0026b

(0.0011)
Past ∆ log 10-km density -0.0017

(0.022)

F-test 1 p-value 0.061 0.0020 0.24 0.82 0.44 0.13 0.0011 0.0055
F-test 2 p-value 0.073 0.65 0.54 0.71 0.88 0.16 0.14 0.15
R2 0.37 0.37 0.37 0.36 0.37 0.26 0.37 0.37
Observations 99,875 99,875 99,875 46,942 48,939 39,253 99,875 99,875
Number of MSA 275 275 275 263 272 275 275 275

Notes: The dependent variable is log household VKT in all columns. Mobility is measured as - average
tenure length in of residents of the same home cell (sample mean, 10.3 years and standard deviation 2.4
years). All regressions are estimated with OLS and include MSA fixed effects with demographic controls (a
white/Asian indicator, log income, log household size, a single indicator, age, age squared, gender,
education, and education squared), geographic controls (average precipitation and its standard deviation,
and average temperature and its standard deviation) and local socio-economic controls (the share of
residents with higher education and its square and log local income). Robust standard errors clustered by
MSA in parentheses. a, b, c: significant at 1%, 5%, 10%. F-test 1 is a joint test of the equality of the coefficients
on initial log 10-km density and ∆ log 10-km density and of the coefficient on mobility ×∆ log density being
zero. F-test 2 is a test of the equality of the coefficients on Initial log 10-km density and ∆ log 10-km density.

a given neighborhood with the mean tenure of a resident in the survey respondent’s home cell.25

We multiply by minus one so that increases in our proxy correspond to increases in mobility.

As discussed in section 3, equation (15) offers two parametric tests of sorting. One of these tests

involves the coefficient of the interaction of a mobility proxy with the change in density, and the

second involves the difference between the coefficients of the level and of the change in density.

All of the specifications in table 5 contain our three explanatory variables of interest. In ad-

dition, column 1 also includes the controls from our preferred specification in column 7 of table

25Our information on residential tenure comes from the acs block group data (National Historical Geographic
Information System, 2010). We impute this variable to grid cells as described in section 4.
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2 (household, neighbourhood and geographic characteristics, and msa fixed effects). In order to

address the possibility that driving behavior varies with tenure, column 2 also controls for the level

of the mobility proxy. This specification closely approximates equation (15) and is our preferred

specification. Column 3 also controls for the mobility rate interacted with the initial level of density.

Column 4 restricts attention to bottom and top quartile of density growth in a 10-kilometer radius

(excluding the top and bottom percentiles). Column 5 considers the complementary sample of

households located in locations at the second and third quartile of density change. Column 6

restricts attention to survey respondents with household age below 50. Columns 7 and 8 consider

the ten-year periods from 1990 to 2000 and from 2000 to 2010.

In every case, we find that the coefficient on initial density and that on the change in density

are statistically close. Except for columns 1 and 8, the coefficient on the change in density is

less than a standard deviation from the coefficient on density. With this said, point estimates

are different and, from equation (15), the difference between these two coefficients is α1, our

measure of selection. Hence, while we cannot, in a majority of cases, reject the hypothesis that

α1 = 0, point estimates suggest it is negative. In our preferred specification in column 2, we

have α1 = −0.075 − (−0.063) = −0.012 and β = −0.063, so that sorting accounts for about

one sixth of the effect of density on driving. In equation (15), we can also implement the second

test for α1 = 0 by rejecting the hypothesis that the coefficient of Mobility ×∆ log(10-kilometer

density)= 0. In every specification, we see that this coefficient is small, precisely estimated and

usually indistinguishable from zero. This also suggests that α1 is small.

We note that, in the same spirit as equation (15), we can also compare the coefficient on initial

density in high-mobility locations (column 4) and low-mobility locations (column 5). In addition,

we can even compare the coefficient obtained when estimating our preferred specification on a

sample of more mobile residents (those below 50 as in column 6) to the overall sample in column

2. In both cases, the differences are close to zero and the coefficients are precisely estimated.

More generally, and in light of the hypothesis tests developed in section 2, table 5 suggests that

as density changes the driving behavior of people who leave is not statistically distinguishable

from that of the people who arrive. With this said, point estimates indicate a modest amount of

sorting.

In the remainder of this section, we report a number of robustness tests for this result. First,

appendix table 13 replicates our preferred estimation from column 2 of table 5 under various
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sample restrictions, with a purely residential population based measure of density, and using

alternative dependent variables. These results are consistent with our findings so far. Excluding

high-density locations or high-vkt households makes no difference. Focusing more narrowly

on more mobile households in locations facing greater changes in population or on less mobile

households in more stable locations yields elasticities of vkt with respect to density that are of

the same magnitude. Using only population instead of population and employment to measure

density makes no difference. We also confirm the results of table 3. That is, the elasticity of daily

vkt is slightly larger than the annual measure, the elasticity of travel time is close to zero, and this

difference is still explained by the difference in travel speed.

Second, appendix table 14 presents a series of regressions that are identical to those of table

5, except that we proxy for the mobility rate with the share of renters in the cell of the survey

residents. These results are qualitatively similar to those of table 5 except that the interaction terms

are marginally larger and are estimated somewhat less precisely. In spite of this, these results

suggest the same conclusion as does table 5. That is, as urban form changes, the driving behavior

of arrivals is like that of those who leave.

We next use age as a proxy for mobility. However, given that the relationship between age and

residential mobility is unlikely to be linear, we use a vector of decadal age dummies to describe

the age of drivers. Then, consistent with the intuition developed in equation (15), we interact

these indicators with changes in urban form. We include these interactions in regressions that also

contain the 1990 level of urban form and changes in urban form. Table 6 reports these results.

Column 1 includes only the log level and change of density within 10 kilometers of a survey

respondent’s home cell, along with an extensive set of control variables. Column 2 includes the

interaction terms. Columns 3-8 repeat column 1 on a variety of subsamples. The results of this

table are striking. In every specification the coefficient of the level and change in urban form are

statistically indistinguishable and coefficients do not vary across specifications. This does not allow

us to reject α1 = 0 in equation (15), and as above, in most specifications point estimates suggest

that α1 is a small negative number. Table 15 in appendix provides further robustness checks for

these results.

Table 7 reports the interaction terms for column 2 of table 6. On the basis of equation (15)

the coefficients of the last set of interaction terms, the interaction of decade of life with change in
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Table 6: Sorting on age OLS estimations

(1) (2) (3) (4) (5) (6) (7) (8)
Household sample All All Age<50 Age>60 Big ∆ Small ∆ Big ∆ Small ∆

Age<50 Age>60

log 10-km density 1990 -0.082a -0.085a -0.086a -0.074a -0.087a -0.080a -0.087a -0.073a

(0.0053) (0.0063) (0.0073) (0.0053) (0.0068) (0.0068) (0.0086) (0.0076)
∆1990−2010 log 10-km density -0.071a -0.068a -0.080a -0.058b -0.091a -0.093 -0.092a -0.13

(0.013) (0.019) (0.022) (0.025) (0.019) (0.057) (0.027) (0.096)

Controls:
Demographics Y Y Y Y Y Y Y Y
Geography Y Y Y Y Y Y Y Y
Local socio-econ. Y Y Y Y Y Y Y Y
Decade indicators N Y N N N N N N
Decade × log density N Y N N N N N N
Decade ×∆ log density N Y N N N N N N

F-test 1 p-value . 0.0028 . . . . . .
F-test 2 p-value 0.31 0.32 0.71 0.51 0.80 0.81 0.81 0.52
R2 0.37 0.37 0.26 0.26 0.36 0.37 0.25 0.27
Observations 99,875 99,875 39,253 40,421 46,942 48,939 18,710 19,980
Number of MSA 275 275 274 274 263 272 247 257

Notes: All regressions include MSA fixed effects. Robust standard errors clustered by MSA in parentheses. a,
b, c: significant at 1%, 5%, 10%. The dependent variables and explanatory variables of interest are in log in
all columns. Demographic controls include a white/Asian indicator, log income, log household size, a
single indicator, age, age squared, gender, education, and education squared. Geographic controls include
average precipitation and its standard deviation, and average temperature and its standard deviation.
Local socio-economic controls include the share of residents with higher education and its square and log
local income. When decade effects are introduced, households in their 40s are used as reference. See table 7
for the detailed results of column 2. F-test 1 is a joint test of the equality of the coefficients on log 10-km
density in 1990 and ∆ log 10-km density and of the coefficients on decade indicators interacted with ∆ log
density all being zero. F-test 2 is a test of the equality of the coefficients on Initial log 10-km density and ∆
log 10-km density.

Table 7: Detailed results for column 2 of table 6: age decade indicators

Age 20-29 30-39 40-49 (ref.) 50-59 60-69 >70

Decade indicators -0.057 0.087 0 0.034 -0.22a -0.13
(0.098) (0.10) (0.075) (0.082) (0.087)

Decade × log 10-km density 1990 0.0033 -0.0073 0 -0.0039 0.014b 0.0035
(0.0079) (0.0085) (0.0060) (0.0068) (0.0067)

Decade × ∆90−10 log 10-km density -0.010 -0.0097 0 0.027 0.022 -0.053
(0.022) (0.020) (0.020) (0.028) (0.036)

Notes: This table reports the coefficients on decades of age, interactions between decades of age and log
10-km density in 1990, and interactions between decades of age and log density changes between 1990 and
2010.
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urban form, should inform us about α1 for that subgroup. We see that these coefficients are all

small relative to the effect of density on driving and are indistinguishable from zero. We note that

the table includes a complete set of interaction as controls. We are concerned that driving behavior

may vary by age or that relationship between driving and density was different in places with

different initial demographics.

We have now completed five distinct tests of the role of sorting. First, we report the result

of Heckman-type corrections for residential selection into high density. These estimates suggest

that the relationship between urban form and driving does not reflect sorting of individuals across

places on the basis of their propensity to drive. Second, in our ols results, we control for observable

characteristics. We find these controls have only a tiny effect on our estimates of the effect of

density on driving and the more formal test of Oster (2017) indicates that unobservables are

unlikely to bias our estimates. Finally, we also develop a parametric test for the role of sorting

and implement it using three different proxies for the mobility rate of residents. In each case, we

find little support for the idea that sorting is an important determinant of the relationship between

density and driving.

D Endogeneity

Table 8 reports the results of a series of instrumental variables estimations. These regressions

are all variants of equation (16) in which we rely on permutations of three types of instruments.

These instruments measure the share of the 10-kilometer disk surrounding a respondent’s home

cell that overlays an aquifer that can provide residential water. This variable is well known to

predict urban form (Burchfield et al., 2006).26 In addition, we construct variables measuring a

respondent’s exposure to earthquakes and landslides. These variables have a remarkably strong

ability to predict surface employment and residential density, and it is not easy to see how they

might influence driving through any other channel given that we control extensively for local

geographic and socio-economic characteristics.27

26Note that our use of aquifers slightly differs from that in (Burchfield et al., 2006). In their work, widely available
underground water in an entire metropolitan area is shown to cause low density and scattered development. In
our analysis, we work at a finer geographical scale and compare areas with underground water, which enjoy more
development, and areas without water, which are less attractive for development.

27One may imagine that these variables may affect vkt indirectly through the road infrastructure. In results not
reported here, we verify that adding measures of the lane kilometers of major roads does not affect our results. This is
consistent with the weak effect of nearby highways and major roads on household vkt uncovered below. We also verify
that our results are robust to the distance to the central business district.
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Table 8: IV regressions

(1) (2) (3) (4) (5) (6) (7) (8)

log 10-km density -0.13b -0.100c -0.12a -0.076a -0.080a -0.075c -0.069a -0.075a

(0.060) (0.054) (0.032) (0.026) (0.025) (0.041) (0.025) (0.024)

Controls N Y Y Y Y Y Y Y
MSA effects N Y Y Y Y Y Y Y

Instruments:
Aquifers Y Y N N Y Y N Y
Earthquakes N N 18 N N 3 3 3
Landslides N N N Y Y N Y Y

Overidentification p-value . . 0.14 0.27 0.39 0.60 0.38 0.45
First-stage statistic 202 32.6 24.2 81.3 82.4 29.5 87.6 83.8

Observations 99,874 99,874 99,874 99,874 99,874 99,874 99,874 99,874
Number of MSA 275 275 275 275 275 275 275 275

Notes: All regressions TSLS regressions with a constant. Controls are demographic controls (a white/Asian
indicator, log income, log household size, a single indicator, age, age squared, gender, education, and
education squared), geographic controls (average precipitation and its standard deviation, and average
temperature and its standard deviation) and local socio-economic controls (the share of residents with
higher education and its square and log local income). In column 3, we use all 18 values of earthquake
intensity as dummy variables. In columns 6 to 8, we group them into three groups (intensity below 2,
between 3 and 14, and above 15.) a, b, c: significant at 1%, 5%, 10%. Robust standard errors clustered by
county in parentheses. Clustering is by county to have a sufficient number of clusters to compute robust
covariance matrices more reliably than when clustering by MSA. The dependent variables and explanatory
variables of interest are in log in all columns. We do not report first-stage results here given that we use 25
different variants for our instruments (most of them to measure earthquakes). We nonetheless note that
lower exposures to landslide or earthquakes and higher presence of aquifers are (conditionally) positively
associated with greater density within 10 kilometers.

In column 1 we present an instrumental variables regression using our aquifers instrument but

do not include other controls. In the second column, we add msa indicators and the same long

list of controls that we use in column 7 of table 2. In the subsequent columns we experiment with

the different instruments and with permutations of these instruments. The coefficient of density is

stable across specifications. In every case our instruments are not weak according to conventional

tests, and in regressions including more than one instrument, we comfortably pass over-id tests.

Most importantly, coefficient estimates are statistically indistinguishable from those in our table

of ols estimations. This suggests that omitted variables correlated with driving and urban form

are not causing economically important bias in our estimates of the relationship between urban

form and driving.28

28Including measures of topography in our results does not change the coefficients on urban form variables in either
ols or iv results. However, it does change our first stage. In particular, our underground geology variables do not
generally pass weak instrument tests if we include topographical variables as controls.
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E Other urban form variables

On the basis of our work so far, it appears that neither sorting nor omitted variables cause bias in

ols estimates. Given this, we now turn to an investigation of the effects of different measures and

spatial scales of urban form on driving using ols regressions.

Tables 9 reports results for a series of ‘horse races’ between measures of urban form. Three

main conclusions emerge from this table. The first is that, although population and employment

appear to play a role in explaining vkt, once we use our preferred measure of density of both jobs

and residents within 10 kilometers, other measures such as the ratio of jobs to residents have no

measurable effect on vkt despite small standard errors. This conclusion holds more broadly than

for the specifications we reported here. We experimented extensively with measures of job vs.

residential locations. The effect we estimate for our preferred measure of 10-kilometer density is

robust to the inclusion of many alternative measures of urban form and none of these alternative

measures of urban form appears to systematically affect vkt.

Our second conclusion concerns roads. We estimate a small positive association between

roads within a 25-kilometer radius of a household’s place of residence and household vkt. We

acknowledge that roads may be simultaneously determined with vkt. This said, we note that the

small effects of roads that we estimate are conditional on density and many other variables. Such

small effects are not inconsistent with new major arterials and highways eliciting a lot of traffic as

households may choose to locate closer to roads (Baum-Snow, 2007) or substitute across roads.29

Our third conclusion is that most of the effect of density takes place within 10 kilometers of a

household’s place of residence. The results of column 5 are even suggestive that it is density within

5 kilometers that is most important. In spite of this, when used ‘alone’ 10-kilometer density is often

more precisely estimated than 5-kilometer density, and so we rely more heavily on 10-kilometer

density in reported results.

In regressions not reported here, we have also used the msa fixed effects estimated in our

preferred ols regression from column 7 of table 2 and regressed them on variables that describe

29In Duranton and Turner (2011), we regress log highway vkt on highway lane kilometers and estimate an elasticity
close to unity. Despite their apparent similarity with the estimations reported here, the regressions of Duranton and
Turner (2011) are very different because they consider vkt for road segments, not households. Three features are
associated with this difference. First, highway vkt represents only about a quarter of aggregate vkt. Second, there
is likely a lot of potential substitution between local roads and highways. Third, we only consider driving by people
who live nearby, thus ignoring vkt by households who live further away, households who relocate, and commercial
traffic.
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Table 9: Driving and urban form, extended OLS estimations

(1) (2) (3) (4) (5) (6) (7) (8)

log 10-km density -0.082a -0.082a -0.088a -0.089a -0.084a

(0.0055) (0.0065) (0.0061) (0.0054) (0.0059)
log 10-km job ratio -0.0020

(0.0066)
log 10-km corrected density 0.0036

(0.0065)
log 10-km land cover -0.0051

(0.0064)
log 10-km population -0.050a

(0.013)
log 10-km employment -0.024a

(0.0068)
log 10-km weighted density -0.043a

(0.0024)
log 1-km density -0.026a

(0.0066)
log 1-to-5 km density -0.044a

(0.0099)
log 5-to-10 km density -0.0042

(0.0078)
log 10-to-25 km density -0.0091

(0.0080)
log 1-km roads -0.00086c

(0.00048)
log 25-km roads 0.018b

(0.0082)
log 25-km arterials 0.022a

(0.0057)
log 25-km highways 0.0015

(0.0011)

R2 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37
Observations 99,870 99,423 99,423 99,861 99,861 99,875 99,875 99,875
Number of MSA 275 275 275 275 275 275 275 275

Notes: The dependent variable is log household VKT in all columns. All regressions are OLS regressions
with MSA fixed effects. Controls are demographic controls (a white/Asian indicator, log income, log
household size, a single indicator, age, age squared, gender, education, and education squared), geographic
controls (average precipitation and its standard deviation, and average temperature and its standard
deviation) and local socio-economic controls (the share of residents with higher education and its square
and log local income). Corrected density in column 2 measures residential population and employment
within a 10-kilometer radius relative to developed land. Weighted density in column 4 is a weighted sum
of density within one kilometer (weight=1), density from one to five kilometers (weight=0.5), density from
five to 10 kilometers (weight =0.25), and density from 10 to 25 kilometers (weight=0.125). Robust standard
errors clustered by MSA in parentheses. a, b, c: significant at 1%, 5%, 10%.
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msas. We found no effect of msa population, area, education, income, or geography. We also found

no effect of measures of msa employment concentration, residential concentration, and mismatch

between jobs and residents. We found weak effects for some measures of segregation and the share

of manufacturing employment. As we experimented with a large number of msa characteristics,

we expect the coefficients of a small proportion of them to be significant. We interpret this large

majority of insignificant coefficients as an absence of msa effects after controlling for the charac-

teristics of households and their immediate surroundings. This absence of metropolitan effect is

consistent with the fact that the insertion of msa fixed effects in table 2 does not improve the R2 of

the regressions. That most of the effect of urban form on vkt should take place within a reasonably

short range may not be surprising given that mean trip distance is slightly less than 13 kilometers

in our data.30 A full exploration of this issue is beyond the scope of this paper as it would involve

revisiting the data and specifications of previous contributions using our measures of density.

F Non-linearities and mode choice

We now return to a feature first apparent in figure 3, the possible non-linearity of the relationship

between log household vkt and log density. Column 1 of table 10 enriches our baseline ols

regression of column 7 of table 2 with a quadratic term for log density and suggests that the effects

of density within a 10 kilometer radius becomes stronger at higher levels of density. Economi-

cally, the increase in the magnitude of the density elasticity of vkt is modest. The coefficient on

squared log density of -0.070 implies a 2.3 percentage point difference between the bottom and

top density deciles relative to a baseline estimate of -8.2%. This finding is confirmed in column

2 where we instead consider two density thresholds. The results of this column indicate that the

density elasticity of vkt is slightly less than one percentage point higher for densities above the

95th percentile and another 1.5 percentage point higher for densities in the top percentile (where

only 1% of households in our sample reside). Although there is a ‘high density’ effect, it remains

modest.

In the rest of table 10, we turn to the extensive margin of urban travel and examine the possible

substitution across modes. For this, we return to the information about individual trips and

30Unlike us, much of extant literature finds that sizeable effects of other measures of urban form on driving (e.g., see
Stevens, 2017, for a summary of these findings). The reasons for this important difference are unclear. We suspect they
might be due to our use of more stringent controls for household and local characteristics.
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Table 10: Non-linearities and mode choice

(1) (2) (3) (4) (5) (6) (7) (8)
Regression OLS OLS logit logit logit logit logit logit
Dep. var. VKT VKT trip trip trip trip trip trip

POV POV transit transit walk/bike walk/bike

log 10-km density -0.0056 -0.078a -0.037a 0.0024 -0.041a -0.089a 0.046a 0.014a

(0.030) (0.0041) (0.0042) (0.0043) (0.010) (0.010) (0.0047) (0.0048)
log 10-km density2 -0.0070b

(0.0029)
log 10-km density, -0.0083a -0.037a 0.030a 0.031a

above 95th pctl (0.0028) (0.0021) (0.0063) (0.0022)
log 10-km density, -0.015a -0.081a 0.13a 0.057a

above 99th pctl (0.0048) (0.0032) (0.0076) (0.0035)

R2 0.37 0.37 0.03 0.03 0.12 0.13 0.03 0.03
Observations 99,875 99,875 837,647 837,647 827,685 827,685 837,606 837,606
Number of MSA 275 275 275 275 211 211 266 266

Notes: The dependent variable is log household VKT in columns 1 and 2, a trip indicator variable taking a
value of 1 for trips with privately owned vehicles in column 3 and 4, a trip indicator variable taking a value
of 1 for transit trips in columns 5 and 6, and a trip indicator variable taking a value of 1 for walking or
biking trip in columns 7 and 8. OLS regressions in columns 1 and 2 and logit regressions in columns 3-8.
Odds ratios reported for all logit regressions. All regressions include MSA fixed effects. Controls are
demographic controls (a white/Asian indicator, log income, log household size, a single indicator, age, age
squared, gender, education, and education squared), geographic controls (average precipitation and its
standard deviation, and average temperature and its standard deviation) and local socio-economic controls
(the share of residents with higher education and its square and log local income). Standard errors in
parentheses. a, b, c: significant at 1%, 5%, 10%.

consider three types of trips, privately-owned vehicles, any form of transit, and walking or biking

trips. The results from our logit estimations indicate that the propensity to use privately-owned

vehicles for a trip declines with density but most of the effect appears concentrated at the top

density percentile. For transit, the relationship is non-monotonic and this mode of transportation

is more prevalent at low and high density. Finally, the share of walking and biking trips increases

with density but the relationship is only significant in the top five density deciles.

These results about the extensive margin of travel do not alter our conclusions so far. For

residents of us metropolitan areas, the share of trips by privately-owned vehicles is about 89%

while the share of transit is less than 2%. Biking or walking trips represent about 9% of trips

(but only a trivial share of kilometers travelled). Although the coefficient (an odds ratio) on

privately-owned vehicles at the top centile of residential density in column 4 of table 10 and that

on transit in column in column 6 should not be dismissed as tiny, it is important to keep in mind

that even for the 1% densest households, the share of transit trips is only 6.4%. At best, the mode
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switches we observe at high density can only explain the higher elasticity of vkt with respect to

density that we observe at the same high levels of density in columns 1 and 2 of table 10.31

6. Discussion

A Using the model: driving and welfare

We now return to our model and use it to perform a series of simple calculations that allow us

to highlight the consistency of our findings with a range of previous results and provide some

suggestive conclusions regarding their welfare implications.

First consider the case when α1 = 0 and there is no sorting. We also find no evidence of an im-

portant role for unobserved local characteristics. This suggests that δ, the unobserved propensity

to drive, is uncorrelated with X, conditional on controls. Together these two conditions imply that

the coefficient β estimated from a regression of log vkt on log density identifies − φ−ζρ
1−ρ+φ as per

equation (7) of our model. The ols estimate of β in column 7 of table 2 is -0.082. Taking alternative

measures of travel distance, the first 3 columns of table 3 estimate slightly larger magnitudes for β

between -0.095 and -0.13. To ease calculation, say β = −0.1, and we have,

β = − φ− ζρ

1− ρ + φ
= −0.1 . (18)

By dividing travel distance in equation (7) by mean trip distance in equation (5), we obtain the

number of trips. Hence, regressing the log number of trips on log density provides an estimate

of ζ + β, where ζ is the accessibility elasticity. Column 7 of table 3 provides such an estimate. It

suggests that ζ = −β + 0.014 = 0.114.32

From equations (6) and (7), regressing speed – an inverse measure of travel cost – on density,

provides an estimate of (1+ β)φ. Hence, our value of−0.1 for β and the estimated density elasticity

of speed of −0.107 in column 6 of table 3 imply φ = 0.119 for the congestion elasticity. Knowing β,

ζ, and φ, it is now easy from equation (18) to provide a value for ρ, the concavity of utility: ρ = 0.5.

31Interestingly, in results not reported here where we additionally control for trip distance in the same logit estima-
tions, most of the effect of density disappears as walking and biking trips are in their overwhelming majority short trips
while transit trips are either short or long. This is consistent with the notion that density reduces driving by increasing
accessibility as documented in table 3.

32We can also obtain a value ζ + β by taking the difference between the density elasticity of mean trip distance in
column 8 of table 3 and the density elasticity of daily vkt in column 3 of the same table. These two measures are
directly comparable as they rely on the same measure of vkt. They imply that the sum ζ + β is very much the same:
0.151− 0.134 = 0.017 instead of 0.014 when this quantity is estimated directly in column 7 of table 3.
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We note that the implied values of the accessibility and congestion externalities, ζ, and φ, are

not sensitive to the exact choice of β. By contrast, the implied value of ρ is sensitive to β. A value

of −0.09 for β implies ρ > 1 whereas a value of −0.11 implies ρ < 0. This is because the value of ρ

in equation (18) results from dividing a small numerator by a small denominator.

While the absence of sorting is a good first-order approximation, we now verify that considering

sorting explicitly does not affect these conclusions. Hence, we now consider situations with

sorting. We assume above that θ = θν. Using this in equation (7) and the parameterization of

sorting in equation (12) implies that the density elasticity of vkt is now α1
1−ρ+φ + β = −0.1. We

can obtain an estimate of the sorting term α1
1−ρ+φ from the difference between the coefficient on

density and that on the change in density in table 5. Our preferred estimate from column 2 of table

5 indicates α1
1−ρ+φ = −0.012. Hence we have β = −0.112 when we consider sorting instead of

−0.1 when we do not. From equations (4) and (7), the density elasticity of the number of trips is

now α1
1−ρ+φ + β + ζ. This implies ζ = 0.126. From equations (5) and (7), the density elasticity of

speed is now
(

1 + β + α1
1−ρ+φ

)
φ which leaves the value of φ = 0.119 unchanged as sorting affects

travel distance and travel time in the same manner and thus disappears when estimating speed as

function of density.33

While there is a large literature that estimates congestion effects through traffic flows and traffic

speed (Small and Verhoef, 2007), most of it is concerned with estimating effect of the (endogenous)

number of vehicles on traffic speed for a particular segment of roads or groups of road segments.

Attempts to measure congestion for an area depending on its population are extremely rare.

Couture et al. (2018) estimate the effect of msa vehicle travel time on a measure of msa speed

and find an elasticity of -0.13 for the largest 100 us msas. With the caveat that msa population and

the density of residents and workers are different objects, we nonetheless note that this estimated

value of φ of 0.13 in Couture et al. (2018) is very similar to our implied value of 0.119 despite a very

different methodology.

We know of no alternative estimate of the accessibility elasticity ζ in the literature that could

be directly compared with ours. Couture (2014) estimates the (constant) elasticity of substitution

between restaurants using a logit model of travel demand. His framework imposes a constant trip

time, which is consistent with the extremely small elasticity we estimate in table 3. His estimates

of the elasticity of substitution are about nine which are consistent with accessibility benefits

33We note that ρ is no longer separately identified from α1 in this context unless further assumptions are being made.
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associated with the number of restaurants of about (9/8-1=)0.125. Although this comparison is

somewhat of a stretch, this value is remarkably close to our estimate of ζ = 0.126 with sorting.

Although they do not explicitly model travel behaviour, Ahlfeldt et al. (2015) estimates the

consumption benefits from greater population density with a structural model that they imple-

ment using detailed data for the city of Berlin. Their structural model estimates an elasticity of

block-level amenities with respect to a discounted measure of nearby residential density of 14%.

This measure of consumption spillover is probably best interpreted as a measure of the importance

of accessibility to nearby amenities and goods. To repeat, this does not directly correspond to our

measure of accessibility ζ but it is nonetheless suggestive of a similar magnitude.

As another check on the consistency of our results, we can return to equilibrium utility as given

by equation (8). As made clear by this equation, the elasticity of utility (which maps directly into

consumption expenditure) with respect to density is ρ
1−ρ+φ [ζ(1 + φ)− φ] ≡ b. Using our implicit

value of the congestion elasticity φ of 0.119, our implicit value of the accessibility elasticity ζ of

0.126, and our preferred value of ρ = 0.5, we obtain an elasticity of utility with respect to density

below 0.02. This implies that equilibrium utility is fairly insensitive to density.34 In turn, this is

consistent with little sorting being detected in our data.

The simple model proposed in section 2 was first used to derive an empirical specification and

discuss identification concerns. In this section, we connect our empirical results to our model. This

leads to the following conclusions. Our empirical results imply estimates of the accessibility and

congestion elasticities which are consistent with previous literature. In line with our empirical

results about the weakness of sorting, these structural parameters also imply weak effects of

density on utility as the accessibility and congestion externality essentially offset each other.

B Some simple equilibrium implications

Policies that aim to both increase population and employment density and reduce driving are

often referred to as ‘smart growth’ policies. These policies are hard to evaluate directly as they

do not generally set explicit density targets and work indirectly through a wide range of instru-

ments. We note nonetheless they generally emphasise high-density new developments and growth

containment through the preservation of less developed land.35 We also note that these policies

34As a caveat, we note that the elasticity of utility with respect to density increases with ρ. For ρ = 0.8, it is equal to
0.06 and rises to 0.18 for ρ = 1.

35https://smartgrowthamerica.org/, June 12, 2017.
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Table 11: Driving and population by density decile.

(1) (2) (3) (4) (5) (6)
Decile Area share Density VKT pp Area VKT Area VKT

(%) share (%) (109 km)

Continental US:

1 83.26% 6.25 19,329 12.2% 620.86
10 0.21% 5,421.04 12,497 7.9% 401.44

MSA only:

5 1.94% 816.19 15,175 9.9% 391.14
9 0.82% 2,741.09 13,779 9.0% 355.14

Notes: Top panel describes first and tenth density deciles of US population. 2010 census and 2008 NHTS
populations are 3.08 million and 321,000, the total area of the continental US is 7.03 million km2, and total
NHTS VKT is 5.08 trillion kilometers. The bottom panel describes the fifth and ninth density deciles of MSA
population. Census and NHTS MSA populations are 2.47 million and 257,000, the total area of the
continental US MSAs is 1.66m km2, and total NHTS VKT is 3.94 trillion kilometers.

only modestly affect urban form. Despite its widely recognized (and often praised) adoption of

smart growth policies, the metropolitan area of Portland saw its population density weighted at

the census tract level go up by only 9% between 2000 and 2010. Portland remains the 24th densest

metropolitan area in the us. For comparison, the metropolitan areas of San Francisco and New

York are about three and seven times denser, respectively. To make our analysis more transparent,

we consider densification policies that are simpler and more drastic.

Table 11 describes the way that people, driving and density are distributed. The top panel

describes the continental us and the bottom panel restricts attention to the approximately 20%

of area and 80% of population within msa boundaries, the sample on which our regressions are

primarily based. The rows of each panel describe ‘density deciles of population’. For example, the

first row of the top panel describes the 10% of the nhts population living in the least dense parts

of the us while the second row describes the 10% of the nhts population living in the densest parts

of the country. These are the subsets of the population that live in the white and black regions of

figure 2a.36

Calculating density deciles of population requires calculating threshold values of density that

divide the nhts population into tenths. The second column of the table describes the share of land

area occupied at the densities intermediate between these thresholds. For example, 83% of us land

36While most of our results so far were derived for msa households to be able to include msa fixed effects, we verified
that similar results are obtained for non-msa households including in column 7 of table 4. We now work with the entire
country for our counterfactual computations.
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area is occupied at lower densities than the threshold density for the bottom density decile of the

nhts population. Moving across columns to the right; the average density of these pixels is 6.25

people or jobs per square kilometer, the average travel per person for nhts people living in these

pixels is 19,329 vehicle-kilometers, and the population of this decile accounts for 12% of all driving

in the nhts, as measured by household odometer readings. Finally, column 7 gives aggregate

driving in each decile in billions of kilometers per year.

Table 11 permits calculations to assess the impact of policies to change density on aggregate

driving. For example, consider a policy which relocates the bottom density decile of us population

into an area whose density is equal to the average density occupied by the top density decile of

population. To implement such a policy we would take population dispersed across 83% of the

country’s land area and settle them in about 0.2% of the country’s land area, concentrating the pop-

ulation resident in the white area of the map in figure 2a into an area the size of the barely visible

black area. From column 3 of table 11, this involves an 867 fold increase in density, from 6.25 to

5,421. From our estimate in column 7 of table 2, this results in about a (1− (5421/6.25)0.082 =)43%

decrease in driving for this decile of the population. Since this decile of population accounts for

about 12% of total driving, this gives about a 5.1% decrease in aggregate driving.

This policy is particularly drastic as it involves increasing density though a massive reduction

in land area. More plausible densification policies arguably involve reallocating a part of the

population from less dense areas to denser areas. We consider for instance a policy that moves

1% of the msa population and employment from the area inhabited by the fifth population decile

of density to the ninth. Although only 1% of the population moves, the entire 20% of the msa

population in the source and destination regions experiences a change in density. Thus, to calculate

the aggregate change in vkt we must calculate the change in aggregate driving for three groups;

the 9% of the population that stays in region five, the 10% of population initially in region nine and

the 1% of the population that moves from region five to region nine. The group that stays in region

five is initially responsible for 0.9× 391.14 billion vkt. They experience a 10% reduction in density.

Using our preferred density elasticity of -0.082, this causes driving to increase by a factor of 1.0087,

an increase of 3.06 billion vkt. The population of region nine initially drives 355.14 billion vkt.

They experience a 10% increase in density which causes their driving to decrease by a factor of

0.9922, for a total decrease of 2.77 billion vkt. Finally, the group of movers initially accounts for

0.1× 391.14 billion vkt. Their residential density increases by a factor of 3.69 from the initial level

42



in region five, 861.14, to the final level in region nine, 1.1× 2,741.09. This causes their driving to

decrease by a factor of 0.90, for a total decrease of 3.91 billion vkt. Summing, this relocation causes

a change in aggregate driving of 3.06− 2.77− 3.91 = −3.62 billion vkt. Since aggregate driving is

about 5.08 trillion vkt, this is a decrease of 0.07%.

To get a sense a sense of the costs of relocating 1% of the total msa population or 2.5 million

people, note that this policy ultimately requires the abandonment of about 1 million houses. At

200,000 dollars per unit, this is 200 billion dollars worth of housing. Using a 5% interest rate, the

annualized value of this housing is about 10 billion dollars. Presumably, densification policies

would allow housing to depreciate before being abandoned, so this we might expect this cost

to be somewhat lower. On the other hand, with a 1 trillion dollar annual expenditure on road

transportation, a 0.07% decline yields annual savings of 700 million dollars. Moreover, according

to Parry, Walls, and Harrington (2007), the external cost associated with car driving is about

seven cents per kilometer.37 Multiplying, the gain from less congestion, fewer accidents, and

less pollution from a 0.07% reduction in driving is only 25 million dollars. Comparing these two

results suggests that the value of reductions in driving is unlikely to be large relative to the costs

of densification.

C Densification vs. gas taxes and congestion pricing

Assessing the wisdom of using density changes to manage traffic requires that we evaluate the

effects of urban form on driving, as we do above, and also that we compare density changes

to other policies that we might use to manage driving, gasoline taxes and congestion pricing in

particular.

There is a large literature on the relationship between gasoline prices and consumption.

Hughes, Knittel, and Sperling (2015) survey this literature, while Coglianese, Davis, Kilian, and

Stock (2017) provide recent contributions to the literature. Because there may be many margins of

adjustments in the long run following a change in gasoline prices, we rely price elasticities in the

short run for which we expect gasoline consumption to reflect driving. While this elasticity appears

37See also Santos, Behrendt, Maconi, Shirvani, and Teytelboym (2010) for further discussion of this issue. There is
a obviously a range of values in the literature for the various components of the external costs associated with car
driving (congestion, accidents, pollution, etc). The values taken by Parry et al. (2007) are on the high side because they
disproportionately rely on us estimates that adopt the statistical value for human life used by the us Department of
Transportation. The statistical value of human life is much higher in the us than in other developed countries.
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to be about 0.3, there is evidence that it may have declined to 0.1 in the last decade (Hughes et al.,

2015).

Using this very conservative estimate, a fifty percent increase in gasoline price causes a 5% re-

duction in total driving. This is about the same decrease in aggregate driving as was accomplished

by the extreme relocation policy described above, but it is accomplished with price variation that

is well within the range of prices experienced in the us between 2010 and 2015. If the objective of

policy is to reduce aggregate driving, it is hard to imagine that gasoline taxes do not accomplish

this objective at a lower cost than forcing density changes.

Congestion pricing schemes are also used as a tool to manage traffic in urban areas and involve

time of day, area specific road tolls. The London congestion charge began in 2003 and required

the payment of about 8 usd to enter central London, an area of about 22 square kilometers, during

working hours. This policy led to a dramatic reduction in travel, about 34% for cars and 12% for

all vehicle types, an increase in peak hour travel speeds from 14.3 to 16.7 kilometers per hour,

and a dramatic decrease in delay relative to free-flow travel speeds (Leape, 2006). The Singapore

congestion charge began in 1975 and was about 2.5 usd per day. It converted from a paper-based

to electronic enforcement system in 1999 with somewhat lower charges. At its beginning, this

program was responsible for about a 45% reduction in peak area vehicle travel in the affected area

and an increase in travel speeds from 19 to 36 kilometers per hour (Santos, 2005). Stockholm is

the third main city with a congestion pricing scheme. Begun in 2006, with a time of day charging

that peaks at about 3 usd at peak hours and tapers to zero during off peak times, this program

caused about 30% reduction in vehicles in the affected areas and a dramatic decrease in travel

times (Borjesson, Eliasson, Hugosson, and Brundell-Freij, 2012).

Relative to the marginal and uncertain reductions in driving that appear to result from densi-

fication policies, it is hard to imagine that congestion pricing is not a more cost effective way to

reduce urban congestion than is density changes.38

38While congestion pricing appears to have dramatic effects on the volume and speed of travel, there is some debate
over whether such programs are welfare improving. The central issue is that the demand for travel appears to be very
elastic, so that deadweight loss from congestion is small, while the costs of implementing congestion pricing plans can
be large. See Prud’homme and Bocarejo (2005) for a nice illustration of these issues, which are also discussed in Couture
et al. (2018).
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7. Conclusion

Urban density appears to have a small causal effect on driving. Our estimates of the density

elasticity are generally between -7% and -10% and is about -8% in our preferred specification.

The literature on this issue is large. Our estimates improve on those in the literature in four ways.

First, we use better data. We are the first to use a data set as large as the nhts to estimate the effect

of urban form on driving using microdata describing households and their residential location.

Second, we develop a parametric test for sorting. Although the literature has long been aware

that cross-sectional differences in driving behavior across locations may reflect sorting, it has yet

to develop a persuasive quasi-experimental design. Given this, our ability to test for sorting using

cross-sectional travel survey data and panel about urban form is an advance. Third, we imple-

ment a quasi-experimental design for dealing with the possibility of endogenous determination

of density. Specifically, we use subterranean geology to instrument for surface density. Fourth,

our econometric model is motivated by a theoretical foundation. Ultimately, this means that we

are able to recover the structural parameters governing the way that travel behavior responds

to density. To the extent that we are able to check, these structural parameters appear to be

consistent with related estimates in the literature. This structural model also highlights that, even

if densification is welfare improving, it does not remove the need for congestion pricing. Whether

neighborhoods are high density or low, without congestion pricing, drivers do not account for

their contribution to congestion without an explicit pricing program.

Our estimates of the relationship of driving to urban form allow us to assess the cost ef-

fectiveness of densification as a policy response to excessive driving. These estimates suggest

that urban form is not cost effective compared to explicit pricing programs. In particular, even

concentrating the population residing in 83% of the area the continental us into an area of about

1500 square kilometers would result in only about a 5% decrease in aggregate driving, and this

policy appears to describe the upper envelope of what densification policies can accomplish. On

the other hand, existing estimates of the gasoline price elasticity of driving suggest that a similar

decrease in driving would be accomplished with a gas tax that is no larger than gasoline price

fluctuations observed over the past five to ten years. Congestion pricing programs appear to have

even larger effects. In sum, while dense urban development may well be desirable because it

provides a residential environment where people want to live and that allows them work more
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productively (e.g., Rosenthal and Strange, 2008), it is probably more costly to manipulate driving

behavior through densification policies than through congestion pricing or gasoline taxes.
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Appendix A. Generalization of sorting model

The econometric model of sorting developed in section 3 assumes that the propensity to drive of

immigrants to location j depends on the density of the region, but that emigrants are a represen-

tative random subset of current residents. We here generalize this model to allow the populations

of both immigrants and emigrants to be systematically different from the population of current

residents.

We maintain the same basic framework. Driving of a resident in location j is given by equation

(11), the propensity to drive of an incumbent resident of location j is given by (12) and we con-

tinue to consider the movement of an exogenous share of residents, s. However, we now allow

the propensity to drive of immigrants and emigrants to diverge and to depend on density. In

particular, using an E superscript to denote emigrants and an I for immigrants, suppose that the

propensity to drive for these two populations are

θ I = ζ I
0 + ζ I

1xj + µij (a1)

θE = ζE
0 + ζE

1 xj + µij, (a2)

and let ∆ζk = ζ I
k − ζE

k . If share s of the population emigrates from j and is replaced according to

this process, then we have the following analog to equation (14),

y1
ij = [(α0 + α1x0

j + µij) + βx1
j + δj] + s[∆ζ0 + ∆ζ1x1

j ] (a3)

= α0 + (α1 + β)x0
j + δs∆xj + β∆xj + ∆ζ0s + ∆ζ1sx0

j + δj + µij. (a4)

All of the terms in this expression, except ∆ζ0s and ∆ζ1sx0
j also appear in the corresponding

expression in the main text, equation (14). The first is simply the level term in share of migrants.

We include this term in our regressions anyhow. The second is a two way interaction. We include

something very close to this term in some of our robustness checks, ∆ζ1sx1
j (column 3, table 5).
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Informally, this more general model of migration and sorting involves tripling the number of

parameters that relate density to propensity to drive (from two to six). Not too surprisingly, when

people migrate and density changes this leads to more interaction terms. This suggests that we

should be cautious in our interpretation of the coefficients of the various interaction terms.

With this said, the basic intuition that motivates our approach appears robust. When people

with different propensities to drive systematically choose different densities and density directly

affects how much people drive, then we should expect that changes in density will have different

effects than lagged levels.

Appendix B. Heckman estimations

In this appendix, we replicate the Heckman selection models estimated by much of prior research.

We now estimate two equations. The first equation is Probit regression estimating the probability

that a household lives in a high density area: Probit(pi) = x−den,iγ + ei, where pi is the probability

of household i residing in a high-density area, x−den is a set of explanatory variables as used in

table 2 which does not include density, and e is a normal error term with standard deviation σe.

The second equation duplicates the vkt regressions estimated so far but also includes among its

explanatory variables a transformation of the predicted probability to live at higher density, as

estimated in the first equation: yi = xiβ + σλ(x−den,iγ/σe) + εi, where λ(x−den,iγ/σe) is computed

as the inverse Mills ratio evaluated at x−den,iγ/σe. Simply put, this approach treats the selection

of households into high-density residential areas as a missing variable problem in the main re-

gression and estimates this missing variable in a separate selection equation from the (non-linear)

probability of residing in a high-density areas.

The results are reported in table 12. In columns 1 to 6, we consider selection into neighborhoods

with above median 10-kilometer density. Depending on the specification, we control for household

demographics alone, add geography and socioeconomic controls, or also add msa fixed effects.

These first six columns of table 12 estimate a density elasticity of vkt between -0.11 and -0.13.

These elasticity are slightly larger in magnitude than those estimated in table 2, but by only two

or three percentage points. In columns 7 and 8, we consider a selection equation for a density

threshold corresponding to the top decile of density for msa households. The estimated density

elasticity of vkt is now larger in magnitude, reaching -0.16 in a specification including msa fixed

50



Table 12: Heckman selection models (one-step maximum likelihood estimation)

(1) (2) (3) (4) (5) (6) (7) (8)
Sample: All All All MSA MSA MSA MSA MSA

Selection into: Above median density Top density decile

log 10-km density -0.12a -0.13a -0.11a -0.12a -0.13a -0.11a -0.21a -0.16a

(0.0058) (0.0064) (0.010) (0.0059) (0.0064) (0.010) (0.022) (0.026)Controls:
Demographics Y Y Y Y Y Y Y Y
Geography N Y Y N Y Y Y Y
Local socio-econ. N Y Y N Y Y Y Y
MSA fixed effects N N Y N N Y N Y
Observations 126,203 126,203 126,203 99,875 99,875 99,875 99,875 99,875

Notes: Results reported for the main regression using log household VKT as dependent variable. The
selection equation regards above median MSA density in columns 1-6, and selection into the highest
density decile in columns 6-8. The sample is all driving households in columns 1-3 and all MSA households
in column 4-8. In columns 1-3, median density is defined relative the entire population of driving
households whereas in columns 4-6, it is defined relative to driving households that live in MSAs. Robust
standard errors in parentheses. a, b, c: significant at 1%, 5%, 10%. Demographic controls include a
white/Asian indicator, log income, log household size, a single indicator, age, age squared, gender,
education, and education squared. Geographic controls include average precipitation and its standard
deviation and average temperature and its standard deviation. Local socio-economic controls include the
share of residents with higher education and its square and log local income.

effects. We further investigate the driving behavior at the top density decile in section F.
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Appendix C. Robustness checks

Table 13: Robustness of selection estimations using local tenure length to measure mobility

(1) (2) (3) (4) (5) (6) (7) (8)

No high den. No high Big ∆ Small ∆ population ind. day ind. day speed
location VKT hh & <50 & >60 density km as DV mn as DV as DV

log 10-km density 1990 -0.070a -0.060a -0.084a -0.054a -0.074a -0.12a -0.018a -0.10a

(0.0039) (0.0055) (0.0098) (0.0088) (0.0056) (0.0079) (0.0043) (0.0049)
∆90−10 log 10-km density -0.029 -0.028 0.023 -0.030 -0.067b -0.15a 0.00072 -0.15a

(0.030) (0.033) (0.063) (0.45) (0.026) (0.041) (0.031) (0.023)
Mobility ×∆ log density -0.00041 -0.00049 0.012c -0.0048 -0.0053 -0.019a -0.0050 -0.013a

(0.0038) (0.0037) (0.0068) (0.040) (0.0035) (0.0047) (0.0034) (0.0030)
Mobility -0.010a -0.0094a -0.0094 -0.024c -0.011a -0.0087b -0.0068b -0.00096

(0.0038) (0.0037) (0.0068) (0.040) (0.0035) (0.0047) (0.0034) (0.0030)

F-test 1 p-value 0.00022 0.017 0.21 0.75 0.000092 0 0.000017 0
F-test 2 p-value 0.17 0.31 0.082 0.96 0.76 0.39 0.52 0.042
R2 0.37 0.34 0.25 0.27 0.37 0.18 0.12 0.14
Observations 74,864 90,662 18,711 19,979 99,875 83,313 85,996 82,849
Number of MSA 275 275 248 252 275 275 275 275

Notes: All regressions include MSA fixed effects. Robust standard errors clustered by MSA in parentheses. a,
b, c: significant at 1%, 5%, 10%. The dependent variable and explanatory variables of interest are in log in
all columns. Demographic controls include a white/Asian indicator, log income, log household size, a
single indicator, age, age squared, gender, education, and education squared. Geographic controls include
average precipitation and its standard deviation, and average temperature and its standard deviation.
Local socio-economic controls include the share of residents with higher education and its square and log
local income. F-test 1 is a joint test of the equality of the coefficients on initial log 10-km density and ∆ log
10-km density and of the coefficient on Mobility ×∆ log density being zero. F-test 2 is a test of the equality
of the coefficients on initial log 10-km density and ∆ log 10-km density.
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Table 14: Selection and mobility using information about the renter/homeowner status of the
households

(1) (2) (3) (4) (5) (6) (7) (8)
Period 90 to 10 90 to 10 90 to 10 90 to 10 90 to 10 90 to 10 00 to 10 00 to 10
Household sample All All All Big ∆ Small ∆ Age<50 All All

Initial log 10-km density -0.081a -0.080a -0.082a -0.085a -0.078a -0.084a -0.080a -0.080a

(0.0053) (0.0052) (0.0051) (0.0067) (0.0067) (0.0072) (0.0052) (0.0050)
∆ log 10-km density -0.057a -0.071a -0.074a -0.089a -0.081 -0.083a -0.053a -0.043b

(0.013) (0.012) (0.012) (0.018) (0.061) (0.022) (0.017) (0.019)
Renter ×∆ log density -0.20a 0.013 0.040 -0.010 -0.087 0.040 0.033 0.032

(0.030) (0.036) (0.038) (0.046) (0.16) (0.035) (0.050) (0.050)
Renter -0.15a -0.33a -0.14a -0.12a -0.14a -0.15a -0.15a

(0.013) (0.094) (0.020) (0.040) (0.018) (0.011) (0.012)
Renter × log density 0.015b

(0.0073)
Past ∆ log 10-km density - -0.032

(0.023)

F-test 1 p-value 0 0.60 0.37 0.95 0.84 0.49 0.10 0.13
F-test 2 p-value 0.026 0.38 0.44 0.80 0.97 0.93 0.078 0.020
R2 0.37 0.37 0.37 0.36 0.37 0.26 0.37 0.37
Observations 99,875 99,875 99,875 46,942 48,939 39,253 99,875 99,875
Number of MSA 275 275 275 263 267 274 275 275

Notes: The dependent variables is log household VKT in all columns. All regressions are estimated with
OLS and include MSA fixed effects with demographic controls (a white/Asian indicator, log income, log
household size, a single indicator, age, age squared, gender, education, and education squared), geographic
controls (average precipitation and its standard deviation, and average temperature and its standard
deviation) and local socio-economic controls (the share of residents with higher education and its square
and log local income). Robust standard errors clustered by MSA in parentheses. a, b, c: significant at 1%, 5%,
10%. F-test 1 is a joint test of the equality of the coefficients on Initial log 10-km density and ∆ log 10-km
density and of the coefficient on Mobility ×∆ log density being zero. F-test 2 is a test of the equality of the
coefficients on initial log 10-km density and ∆ log 10-km density.
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Table 15: Robustness checks for sorting on demographics OLS estimations

(1) (2) (3) (4) (5) (6) (7) (8)
Period 00 to 10 00 to 10 00 to 10 90 to 10 90 to 10 90 to 10 90 to 10 90 to 10
Household sample All <50 >60 All All Indiv. All All
Dependent var.: an. km an. km an. km stated kmodometerind. day km an. km an. km
Density: 10 km 10 km 10 km 10 km 10 km 10 km 1 km NLCD 10 km

Initial log density -0.082a -0.087a -0.075a -0.12a -0.094a -0.14a -0.053a -0.040a

(0.0053)(0.0072)(0.0054) (0.0075) (0.0060) (0.0083) (0.0037) (0.0046)
∆ log density -0.050a -0.049c -0.036 -0.066a -0.077a -0.066b -0.047a -0.039a

(0.017) (0.028) (0.035) (0.024) (0.024) (0.029) (0.0060) (0.0069)
Past ∆ density -0.037 -0.015

(0.028) (0.039)
Controls:
Demographics Y Y Y Y Y Y Y Y
Geography Y Y Y Y Y Y Y Y
Local socio-econ. Y Y Y Y Y Y Y Y
Decade indicators N N N Y Y Y Y Y
Decade × log density N N N Y Y Y Y Y
Decade ×∆ log density N N N Y Y Y Y Y

F-test 1 p-value . . . 0.0001 0.027 0 0.0034 0.0033
F-test 2 p-value 0.039 0.10 0.27 0.015 0.40 0.0062 0.22 0.91
R2 0.37 0.26 0.26 0.42 0.43 0.09 0.37 0.37
Observations 99,875 39,253 40,421 93,602 71,742 121,808 99,874 99,423
Number of MSA 275 274 274 275 275 275 275 275

Notes: All regressions include MSA fixed effects. Robust standard errors clustered by MSA in parentheses. a,
b, c: significant at 1%, 5%, 10%. The dependent variables and explanatory variables of interest are in log in
all columns. Demographic controls include a white/Asian indicator, log income, log household size, a
single indicator, age, age squared, gender, education, and education squared. Geographic controls include
average precipitation and its standard deviation, and average temperature and its standard deviation.
Local socio-economic controls include the share of residents with higher education and its square and log
local income. When decade effects are introduced, households in their 40s are used as reference. F-test 1 is
a joint test of the equality of the coefficients on initial log 10-km density and ∆ log 10-km density and of the
coefficients on decade indicators interacted with ∆ log density all being zero. F-test 2 is a test of the
equality of the coefficients on initial log 10-km density and ∆ log 10-km density.
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