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1. Introduction

Cities differ in many ways. A myriad of small towns coexist with medium-sized cities and a

few urban giants. Some cities have a diversified economic base, whereas others are specialized

by industry or by the functions they perform. A few large cities attract the brightest minds,

while many small ones can barely retain their residents. Most importantly, however, cities differ

in productivity: large cities produce more output per capita than small cities do. This urban

productivity premium may occur because of locational fundamentals, because of agglomeration

economies, because more talented individuals sort into large cities, or because large cities

select the most productive entrepreneurs and firms. The literature from Marshall (1890) on

has devoted most of its attention to agglomeration economies, whereby a high density of firms

and workers generates positive externalities to other firms and workers. It has done so almost

exclusively within a representative agent framework. That framework has proved extremely

useful for analyzing many different microeconomic foundations for the urban productivity

premium. It is, however, ill-suited to study empirically relevant patterns such as the over-

representation of highly educated workers and highly productive firms in large cities. It has

also, by definition, very little to say on distributional outcomes in cities.

Individual and firm-level data has revealed that the broad macro relationships among urban

aggregates reflect substantial heterogeneity at the micro level. Theorists have started to build

models to address these issues and to provide microeconomic foundations explaining this

heterogeneity in a systematic manner. Our chapter provides a unifying framework of urban

systems to study recent developments in agglomeration theory. To this end, we extend the

canonical model developed by Henderson (1974) along several dimensions, in particular to

heterogeneous agents.1 Doing so allows us to analyze urban macro outcomes in light of micro

heterogeneity, and to better understand the patterns substantiated by the data. We also show

how this framework can be used to study under-researched issues and how if allows us to

uncover some caveats applying to extant theoretical work. One such caveat is that sorting

and selection are intrinsically linked, and that assumptions which seem reasonable in partial

equilibrium are inconsistent with the general equilibrium logic of an urban systems model.

Our chapter is organized as follows. Section 2 uses a cross section of us cities to document

the following set of stylised facts that we aim to make sense of within our framework. fact 1

(size and fundamentals): the population size and density of a city are positively correlated with

the quality of its fundamentals. fact 2 (urban premia): the unconditional elasticity of mean

earnings and city size is about 8%, and the unconditional elasticity of median housing rents

and city size is about 9%. fact 3 (sorting): the share of workers with at least a college degree

1Worker and firm heterogeneity has also sparked new theories in other fields. See, for example, Grossman’s
(2013) and Melitz and Redding’s (2014) reviews of international trade theories with heterogeneous workers and
heterogeneous firms, respectively.
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is increasing in city size. fact 4 (selection): the share of self-employed is negatively correlated

with urban density and with net entry rates of new firms, so that selection effects may be at

work. fact 5 (inequality): the Gini coefficient of urban earnings is positively correlated with

city size and the urban productivity premium is increasing in the education level. fact 6 (Zipf’s

law): the size distribution of us places follows closely a log-normal distribution and that of us

msas follows closely a power law (aka, Zipf’s law).

The rest of our chapter is devoted to theory. Section 3 sets the stage by introducing the

canonical model of urban systems with homogeneous agents. We extend it to allow for

heterogeneous fundamentals across locations and show how the equilibrium patterns that

emerge are consistent with facts 1 (size and fundamentals), 2 (urban premia), and, under

some assumptions, 6 (Zipf’s law). We also show how cities differ in their industrial and

functional specialization. Section 4 introduces heterogeneous agents and shows how the

model with sorting replicates facts 2 (urban premia), 3 (sorting), and 6 (Zipf’s law). The

latter result is particularly striking since it arises in a static model and relies solely on the

sorting of heterogeneous agents across cities. We also show under what conditions the model

with heterogeneous agents allows for selection effects, as in fact 4 (selection), what their

city-wide implications are, and how they are linked to sorting. Section 5 builds on the previous

developments to establish fact 5 (inequality). We show how worker heterogeneity, sorting, and

selection interact with agglomeration economies to deliver a positive equilibrium relationship

between city size and urban inequality. This exercise also reveals that few general results are

known and much work remains to be done in this area.

Before proceeding, let us stress that our framework is purely static. As such, it is ill

equipped to study important fluctuations in the fate of cities such as New York, which has

gone through periods of stagnation and decline before emerging, or more recently Detroit and

Pittsburgh. Housing stocks and urban infrastructure depreciate only slowly so that housing

prices and housing rents swing much more than city populations do (Henderson and Venables,

2009). Desmet and Henderson’s (2014) chapter in this Handbook provides a more systematic

treatment of the dynamic aspects and evolution of urban systems.

Let us further stress that the content of our chapter reflects the difficult and idiosyncratic

choices that we made in the process of writing it. We have opted for studying a selective set of

topics in depth rather than cast a wide but shallow net. We have, for instance, limited ourselves

to urban models and largely omitted ‘Regional Science’ and ‘New Economic Geography’

contributions. Focusing on the macro aspects and on heterogeneity, we view this chapter

as a natural complement to Duranton and Puga’s (2004) chapter on the micro-foundations for

urban agglomeration economies in volume 4 of this handbook series. Where Duranton and

Puga (2004) take city sizes mostly as given to study the microeconomic mechanisms that give

rise to agglomeration economies, we take the existence of these city-wide increasing returns

for granted. Instead, we consider the urban system and allow for worker and firm mobility
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across cities to study how agglomeration economies, urban costs, heterogeneous locational

fundamentals, heterogeneous workers and firms, and selection effects interact to shape the

size, composition, productivity, and inequality of cities. In that respect, we build upon and

extent many aspects of urban systems that have been analyzed before without paying much

attention to micro-level heterogeneity (see Abdel-Rahman and Anas, 2004, for a survey).

2. Four causes and two moments: A glimpse at the data

To set the stage and organize our thoughts, we first highlight a number of key stylized facts.2

We keep this section brief on purpose and paint only the big picture related to the four

fundamental causes that affect the first two moments of the income, productivity, and size

distributions of cities. We report more detailed results from empirical studies as we go along.

The four fundamental causes that we focus on to explain the sizes of cities, their composition,

and the associated productivity gains are: (i) locational fundamentals; (ii) agglomeration

economies; (iii) the spatial sorting of heterogeneous agents; and (iv) selection effects. These

four causes influence – either individually or jointly – the spatial distribution of economic

activity and the first moments of the productivity and wage distributions within and across

cities. They also affect – especially jointly – the second moments of those distributions. The latter

effect, which is important from a normative perspective, has received little attention until now.

2.1 Locational fundamentals

Locations are heterogeneous. They differ in endowments (natural resources, constructible

area, soil quality,. . .), in accessibility (presence of infrastructures, access to navigable rivers

2Data sources: The ‘places’ data comes from the “Incorporated Places and Minor Civil Divisions Datasets:
Subcounty Resident Population Estimates: April 1, 2010 to July 1, 2012” files from the us Census Bureau
(SUB-EST2012.csv). It contains 81,631 places. For the big cities, we use 2010 Census and 2010 acs 5-year
estimates (American Community Survey, us Census Bureau) data for 363 continental us metropolitan statistical
areas. The 2010 data on urban clusters comes from the Census Gazetteer files (Gaz_ua_national.txt). We
aggregate up urban clusters at the metro- and micropolitian statistical area level using the ‘2010 Urban Area
to Metropolitan and Micropolitan Statistical Area (cbsa) Relationship File’ (ua_cbsa_rel_10.txt). From the
relationship file, we compute msa density for the 363 continental msas (excluding Alaska, Hawaii, and Puerto
Rico). We also compute ‘cluster density’ at the msa level by keeping only the urban areas within an msa and
by excluding msa parts that are not classified as urban areas (variable ua = 99999). This yields two density
measures per msa: overall density, D; and cluster density b. We further have total msa population and ‘cluster’
population. We also compute an ‘urban cluster’ density measure in the spirit of Wheeler (2004), where the
cluster density of an msa is given by the population-weighted average density of the individual urban clusters
in the msa. The ‘msa geological features’ variable is constructed using the same us Geological Survey data as
in Rosenthal and Strange (2008a): seismic hazard, landslide hazard, and sedimentary bedrock. For illustrative
purposes, we take the log of the sum of the three measures. The data on firm births, firm deaths, and the
number of small firms comes from the County Business Patterns (files msa_totals_emplchange_2009-2010.xls

and msa_naicssector_2010.xls) of the us Census Bureau. The data on natural amenities comes from the us
Department of Agriculture (file natamenf_1_.xls). Last, the data on state-level venture capital comes from the
National Venture Capital Association (file RegionalAggregateData42010FINAL.xls).
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and natural harbors, relative location in the urban system,. . .), and in many other first- and

second-nature characteristics (climate, consumption and production amenities, geological and

climatic hazards,. . .). We regroup all these factors under the common header of locational funda-

mentals. The distinctive characteristics of locational fundamentals are that they are exogenous

to our static economic analysis and that they can either attract population and economic activity

(positive fundamentals such as a mild climate) or repulse them (negative fundamentals such

as exposure to natural hazards). The left panel of Figure 1 illustrates the statistical relationship

Figure 1: (Fundamentals) msa population, climatic amenities, and geological disamenities.
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details. The ‘msa geological features’ is the product of landslide, seismic hazard, and the share of sedimentary bedrock. The slope in the left

panel is 0.057 (standard error 0.019). The unconditional slope in the right panel is 0.059 (standard error 0.053), and the conditional slope is

-0.025 (standard error 0.047).

between a particular type of (positive) amenities and the size of us metropolitan statistical areas

(henceforth, msas). The msa amenity score – constructed by the us Department of Agriculture –

draws on six underlying factors: mean January temperature; mean January hours of sunlight;

mean July temperature; mean relative July humidity; the percentage of water surface; and a

topography index.3 Higher values of the score are associated with locations that display better

amenities, for example sunny places with a mild climate, both of which are valued by residents.

As can be seen from the left panel of Figure 1, locations well-endowed with (positive)

amenities are on average larger. As can be seen from the right panel of Figure 1, locations with

3Higher mean January temperature and more hours of sunlight are positive amenities, whereas higher mean
July temperature and greater relative humidity are disamenities. The topography index takes higher values for
more difficult terrain (ranging from 1=flat plains, to 21=high mountains) and thus reflects, on the one hand, the
scarcity of land (Saiz, 2010). On the other hand, steeper terrain may offer positive amenities such as unobstructed
views. Last, a larger water surface is a consumption amenity but a land supply restriction. Its effect on population
size is a priori unclear.
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worse geological features (higher seismic or landslide hazard, and a larger share of sedimentary

bedrock) are on average smaller after partialling out the effect of amenities.4

While empirical work on city sizes and productivity suggests that locational fundamentals

may explain about one-fifth of the observed geographical concentration (Ellison and Glaeser,

1999), theory has largely abstracted from them. Locational fundamentals do, however, interact

with other agglomeration mechanisms to shape economic outcomes. They pin down city

locations and explain why those locations and city sizes are fairly resilient to large shocks

or technological change (Davis and Weinstein, 2002; Bleakley and Lin, 2013). As we show later,

they may also serve to explain the size distribution of cities.

Figure 2: (Agglomeration) msa population, mean household income, and median rent.
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Notes: Authors’ calculations based on us Census Bureau data for 363 msas in 2010. See footnote 2 for details. The unconditional slope in

the left panel is 0.081 (standard error 0.006), and the conditional slope is 0.042 (standard error 0.005). The slope in the right panel is 0.088

(standard error 0.008).

2.2 Agglomeration economies

Interactions within and between industries give rise to various sorts of complementarities and

indivisibilities. We regroup all those mechanisms under the common header agglomeration

economies. These include matching, sharing, and learning externalities (Duranton and Puga,

2004) that can operate either within an industry (localization economies) or across industries

(urbanization economies). Labor market pooling, input-output linkages, and knowledge

4The right panel of Figure 1 shows that worse geological features are positively associated with population
size when not controlling for amenities. The reason is that certain amenities (e.g., temperature) are valued more
highly than certain disamenities (e.g., seismic risk). This is especially true for California and the us West Coast,
which generate a strong positive correlation between seismic and landslide hazards and climate variables.
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spillovers are the most frequently invoked Marshallian mechanisms that justify the existence

of city-wide increasing returns to scale.

The left panel of Figure 2 illustrates the presence of agglomeration economies for our cross

section of us msas. The unconditional size elasticity of mean household income with respect to

urban population is 0.081 and statistically significant at 1%. This estimate falls within the range

usually found in the literature: the estimated elasticity of income or productivity with respect

to population (or population density) is between 2-10%, depending on the methodology and

the data used (Rosenthal and Strange, 2004; Melo, Graham, and Noland, 2009). The right

panel of Figure 2 depicts the corresponding urban costs (‘congestion’ for short), proxied by the

median gross rent in the msa. The estimated elasticity of urban costs with respect to urban

population is 0.088 in our sample and statistically significant at 1%. Observe that the two

estimates are very close: the difference of 0.007 is statistically indistinguishable from zero.5

Though the measurement of the urban congestion elasticity has attracted much less attention

than that of agglomeration economies in the literature, so that it is too early to speak about a

consensual range for estimates, recent studies suggest that the gap between urban congestion

and agglomeration elasticities is positive yet tiny (Combes, Duranton, and Gobillon, 2014). We

show later in the chapter that this has important implication for the spatial equilibrium and

the size distribution of cities.

2.3 Sorting of heterogeneous agents

Though cross-city differences in size, productivity, and urban costs may be the most visible

ones, cities also differ greatly in their composition. Most basically, cities differ in their industrial

structure: diversified and specialized cities co-exist, with no city being a simple replica of the

national economy (Helsley and Strange, 2014). Cities may differ both horizontally, in terms of

the set of industries they host, and vertically, in terms of the functions they perform (Duranton

and Puga, 2005). Cities also differ fundamentally in their human capital, the set of workers

and skills they attract, and the ‘quality’ of their entrepreneurs and firms. These relationships

are illustrated by Figure 3, which shows that the share of the highly skilled in an msa is

strongly associated with the msa’s size (left panel) and density (right panel). We group under

the common header sorting all mechanisms that imply that heterogeneous workers, firms, and

industries make heterogeneous location choices.

The consensus in the recent literature is that sorting is a robust feature of the data and

that differences in worker ‘quality’ across cities explains up to 40-50% of the measured size-

productivity relationship (Combes, Duranton, and Gobillon, 2008). This is illustrated by the left

panel in Figure 2, where the size elasticity of wages falls from 0.081 to 0.049 once the share of

5The estimated standard deviation of the difference is 0.011, with T -stat of 0.63 and p-value of 0.53.
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‘highly skilled’ is introduced as a control.6 Although there are some sectoral differences in the

strength of sorting, depending on regional density and specialization (Matano and Naticchioni,

2012), sorting is essentially a broad-based phenomenon that cuts across industries: about 80%

of the skill differences in larger cities occur within industries, with only 20% accounted for by

differences in industrial composition (Hendricks, 2011).

Figure 3: (Sorting) msa population, cluster density, and share of ‘highly educated’ workers.
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Notes: Authors’ calculations based on us Census Bureau data for 363 msas in 2010. See footnote 2 for details. The slope in the left panel is

0.117 (standard error 0.014). The slope in the right panel is 0.253 (standard error 0.048).

2.4 Selection effects

The size, density, industrial composition, and human capital of cities affect entrepreneurial

incentives and the relative profitability of different occupations. Creating a firm and running a

business also entails risks that depend, among others, on city characteristics. Although larger

cities provide certain advantages for the creation of new firms (Duranton and Puga, 2001),

they also host more numerous and better competitors, thereby reducing the chances of success

for budding entrepreneurs and nascent firms. They also increase wages, thus changing the

returns of salaried work relative to self-employment and entrepreneurship. We group under

the common header selection all mechanisms that influence agents’ occupational choices and

the choice of firms and entrepreneurs to operate in the market.

6How to conceive of ‘skills’ or ‘talent’ is a difficult empirical question. There is a crucial distinction to be made
between horizontal skills and vertical talent (‘education’), as emphasized by Bacolod, Blum, and Strange (2009a,b;
and 2010). That distinction is important for empirical work or for micro-foundations of urban agglomeration
economies, but less so for our purpose of dealing with cities from a macro perspective. We henceforth use the
terms ‘skills’, ‘talent’, or ‘education’ interchangeably and mostly conceive of it as being vertical in nature.
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Figure 4 illustrates selection into entrepreneurship across us msas. Although there is no

generally agreed upon measure of ‘entrepreneurship’, we use either the share of self-employed

in the msa, or the average firm size, or the net entry rate (firm births minus firm deaths over

total number of firms), which are standard proxies in the literature (Glaeser and Kerr, 2009).7

As can be seen from the left panel of Figure 4, there is no clear relationship between msa size

and the share of self-employed in the us. However, Table 1 shows that there is a negative and

significany relationship between msa density and the share of self-employed.8 Furthermore,

as can be seen from the the right panel of Figure 4 and from Table 1, the net entry rate for

firms is lower in larger msas. Also, larger cities or cities with more self employment have

smaller average firm sizes, and the latter two characteristics are positively associated with firm

churning and different measures of venture capital investment.9

Figure 4: (Selection) msa population, share of self employed, and net entry rates.
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Notes: Authors’ calculations based on us Census Bureau data for 363 msas in 2010. See footnote 2 for details. The slope in the left panel is

0.005 (standard error 0.010). The slope in the right panel is -0.075 (standard error 0.031).

The right panel of Figure 4 and some correlations in Table 1 are suggestive of the possible

existence of ‘selection effects’. For example, firm turnover is substantially higher in bigger

cities. We will show that the existence and direction of selection effects with respect to market

7Glaeser and Kerr (2009, pp.624–627) measure entrepreneurship by “new entry of stand-alone plants”. They
focus on ‘manufacturing entrepreneurship’ only, whereas our data contain all firms. They note that their “[. . .]
entry metric has a 0.36 and 0.66 correlation with self-employment rates in the year 2000 at the city and state levels,
respectively. Correlation with average firm size is higher at -0.59 to -0.80.” Table 1 shows that our correlations
have the same sign, though the correlation with average size is lower.

8The estimated density elasticity from a simple ols regression is -0.032 and statistically significant at 1%
9A word of caution is in order. The venture capital data is only available at the state level, and per capita

figures are relative to state population. Hence, we cannot accound for within-state variation in venture capital
across msas.
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size or density is theoretically ambiguous: whether more or fewer firms survive or whether

the share of entrepreneurs increases or decreases strongly depends on modeling choices. This

finding may explain why the current empirical evidence is inconclusive.

Table 1: Correlations between alternative measures of ‘entrepreneurship’ and msa size.

‘Entrepreneurship’ measures
Variables Self-employed (share) log(avg firm empl.) entry rate log(msa population)

log(msa population) 0.0062 0.3502∗ 0.5501∗ —
log(msa density) -0.1308∗ 0.3359∗ 0.2482∗ 0.6382∗

log(avg firm employment) -0.7018∗ — -0.1394∗ 0.3502∗

exit rate 0.3979∗ -0.2019∗ 0.7520∗ 0.5079∗

entry rate 0.3498∗ -0.1394∗ — 0.5501∗

net entry rate -0.1258∗ 0.1144∗ 0.2119∗ -0.0231
churning 0.4010∗ -0.1826∗ 0.9193∗ 0.5664*
Venture capital deals (# per capita) 0.1417∗ -0.1396∗ -0.0197 0.1514∗

Venture capital invest ($ per capita) 0.0791 -0.1028 0.0314 0.1403∗

Venture capital invest ($ per deal) 0.1298∗ -0.1366∗ 0.1139 0.0871
Share of highly educated 0.2006∗ 0.0104 0.2414∗ 0.4010∗

Notes: See footnote 2 for information on the data used. The three venture capital variables are constructed at the state
level only (using state-level population for per capita measures). Multi-state msa values are averaged across states. We
indicate by ∗ correlations that are significant at the 5% level.

2.5 Inequality and city size

The size and density of cities are correlated with their composition, with the occupational

choices of their residents, and with the success probabilities of businesses. They are also

correlated with inequality in economic outcomes. That larger cities are more unequal places is

a robust feature of the data (Glaeser, Tobio, and Resseger, 2010; Baum-Snow and Pavan, 2014).

This is illustrated by Figure 5.

The left panel depics the relationship between msa size and inequality as measured by the

Gini coefficient of income. The human capital composition of cities has a sizable effect on

inequality: the size elasticity of the Gini coefficient falls from 0.011 to 0.08 once education

(as measured by the share of college graduates) is controlled for. Size however also matters

for inequality beyond the sorting of the most educated agents to the largest cities. One of the

reasons is that agglomeration interacts with human capital sorting and with selection to ‘dilate’

the income distribution (Combes, Duranton, Gobillon, Puga, and Roux, 2012; Baum-Snow and

Pavan, 2014). As can be seen from the right panel of Figure 5, the size elasticity of income

is increasing across the income distribution, thus suggesting that agglomeration economies

disproportionately accrue to the top of the earnings or productivity distribution of workers

and firms.
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Figure 5: (Inequality) msa population, Gini coefficient, and mean incomes by groups.
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Figure 6: (Size distribution) Size distribution of places and the rank-size rule of cities.
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2.6 City size distribution

The spatial distribution of population exhibits strong empirical regularities in many countries

of the world. Figure 6 illustrates these strong patterns for the us data. Two aspects are worth
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mentioning. First, as can be seen from the left panel of Figure 6, the distribution of populated

places in the us is well approximated by a log-normal distribution (Eeckhout, 2004). As is well

known, the upper tail of that distribution is difficult to distinguish from a Pareto distribution.

Hence, the size distribution of the largest cities in the urban system approximately follows

a power law. That this is indeed a good approximation can be seen from the right panel of

Figure 6: the size distribution of large us cities displays Zipf’s law, i.e., it follows a Pareto

distribution with a unitary shape parameter (Gabaix, 1999; Gabaix and Ioannides, 2004).10

2.7 Assembling the pieces

The foregoing empirical relationships point towards the key ingredients that agglomeration

models focusing on city-wide outcomes should contain. While prior work has essentially

focused on those ingredients individually, we argue that looking at them jointly is impor-

tant, especially if distributional issues are of concern. To understand how the four causes

(heterogeneous fundamentals, agglomeration economies, and the sorting and selection of

heterogeneous agents) interact to shape the two moments (average and dispersion) and the

productivity and income distributions, consider the following simple example. Assume that

more talented individuals, or individuals with better cognitive skills, gain more from being

located in larger cities (Bacolod, Blum, and Strange, 2009a). The reasons may be that larger

cities are places of intense knowledge exchange, that better cognitive skills allow to absorb

and process more information, that information is more valuable in bigger markets, or any

combination of these. The complementarity between agglomeration economies – knowledge

spillovers in our example – and agents’ talent leads to the sorting of more able agents into

larger cities. Then, more talented agents make those cities more productive. They also make

them places where it is more difficult to succeed in the market – as in Sinatra’s “New York,

New York, if I can make it there I’ll make it anywhere.” Selection effects and increasing urban

costs in larger cities then discourage less able agents from going there in the first place, or ‘fail’

some of them who are already there. Those who do not fail reap, however, the benefits of larger

urban size. Thus, the interactions between sorting, selection, and agglomeration economies

shape the wage distribution and exacerbate income inequality across cities of different sizes.

They also largely contribute to shaping the equilibrium size distribution of cities.

10Rozenfeld, Rybski, Gabaix, and Makse (2011) have shown that even the distribution of us ‘places’ follows
Zipf’s law when places are constructed as geographically connected areas from satellite data. This finding
suggests that the distribution is sensitive to the way space is (or is not) partitioned when constructing ‘places’,
which is reminiscent of the classical ‘modifiable areal unit problem’ that plagues spatial analysis at large.
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3. Agglomeration

We start by laying out the framework upon which we build throughout this chapter. That

framework is flexible enough to encompass most aspects linked to the size, composition, and

productivity of cities. It can also accomodate the qualitative relationships in the data we have

highlighted, and it lends itself quite naturally to empirical investigation. We are not interested

in the precise microeconomic mechanisms that give rise to city-wide increasing returns; we

henceforth simply assume their existence. Doing so greatly eases the exposition and the quest

for a unified framework. We enrich the canonical model as we go along and as required by the

different aspects of the theory. Whereas we remain general when dealing with agglomeration

economies throughout this chapter, we impose more structure on the model when analyzing

sorting, selection, and inequality. We first look at agglomeration theory when agents are

homogeneous in order to introduce notation and establish a (well-known) benchmark.

3.1 Main ingredients

The basic ingredients and notation of our theoretical framework are the following. First, there

is set C of sites. Without loss of generality, one site hosts at most one city. We index cities – and

the sites they are developed at – by c and we denote by C their endogenously determined

number, or mass. Second, there is a (large) number I of perfectly competitive industries,

indexed by i. Each industry produces a homogeneous final consumption good. For simplicity,

we stick to the canonical model of Henderson (1974) and we abstract from intercity trade costs

in final goods. We later also introduce non-traded goods specific to some cities.11 Production

of each good requires labor and capital, both of which are freely mobile across cities. Workers

are hired locally and paid city-specific wages, whereas capital is owned globally and fetches

the same price everywhere. We assume that total output, Yic, of industry i in city c is given by

Yic = AicLicK
1−θi
ic L

θi
ic , (1)

where Aic is an industry-and-city specific productivity shifter, which we refer to as ‘total factor

productivity’ (henceforth, tfp); Kic and Lic denote the capital and labor inputs, respectively,

with economy-wide labor share 0 < θi ≤ 1; and Lic is an agglomeration effect external to firms

in industry i and city c.

Since final goods industries are perfectly competitive, firms in those industries choose

labor and capital inputs in equation (1) taking the tfp term, Aic, and the agglomeration

effect, Lic, as given. In what follows, bold capitals denote aggregates that are external to

11A wide range of non-traded consumer goods in larger cities are clearly a force pushing towards agglom-
eration. The literature has in recent years moved away from the view whereby cities are exclusively places of
production to conceive of ‘consumer cities’ as places of consumption of local amenities, goods, and services
(Glaeser, Kolko, and Saiz, 2002; Lee, 2010; Couture, 2014).

12



individual economic agents. For now, think of them as black boxes that contain standard

agglomeration mechanisms (see Duranton and Puga, 2004; and Puga, 2010, for surveys on the

microfoundations of urban agglomeration economies). We later open those boxes to look at

their microeconomic contents, especially in connection with the composition of cities and the

sorting and selection of heterogeneous agents.

3.2 Canonical model

To set the stage, we build a simple model of a system of cities in the spirit of the canonical

model by Henderson (1974). In that canonical model, agglomeration and the size distribution

of cities are driven by some external agglomeration effect and the unexplained distribution of

tfp across sites. We assume for now that there is no heterogeneity across agents, but locational

fundamentals are heterogeneous.

3.2.1 Equilibrium, optimum, and maximum city sizes

Consider an economy with a single industry and labor as the sole primary input (I = 1 and

θi = 1). The economy is endowed with L homogeneous workers who distribute themselves

across cities. City formation is endogeneous. All cities produce the same homogeneous final

good, which is freely tradeable and used as numeraire. Each city has an exogeneous tfp

Ac > 0. These city-specific tfp terms are the locational fundamentals linked to the sites the

cities are developed at. In a nutshell, Ac captures the comparative advantage of site c to

develop a city: sites with a high tfp are particularly amenable to hosting a city. Without loss

of generality, we index cities in decreasing order of their tfp: A1 ≥ A2 ≥ . . . ≥ AC .

For cities to arise in equilibrium, we further assume that production exhibits increasing

returns to scale at the city level. From (1), aggregate output Yc is such that

Yc = AcLcLc. (2)

Perfect competition in the labor market and zero profits yield a city-wide wage that is increas-

ing in city size: wc = AcLc. The simplest specification for the external effect Lc is that it is

governed by city size only: Lc = Lǫ
c. We refer to ǫ ≥ 0, a mnemonic for ‘ǫxternal’, as the

elasticity of agglomeration economies with respect to urban population. Many microeconomic

foundations involving matching, sharing, or learning externalities give rise to such a reduced

form external effect (Duranton and Puga, 2004).

Workers spend their wage net of urban costs on the numeraire good. We assume that per

capita urban costs are given by L
γ
c , where the parameter γ is the congestion elasticity with

respect to urban size. This can easily be micro-founded with a monocentric city model in

which γ is the elasticity of commuting cost with respect to commuting distance (Fujita, 1989).

We could also consider that urban costs are site specific and given by BcL
γ
c . If sites differ
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both in productivity Ac and in urban costs Bc, all our results go through by redefining the

net advantage of site c as Ac/Bc. We henceforth impose to Bc = 1 for all c for simplicity.

Assuming linear preferences for consumers, the utility level associated with living in city c is

equal to

uc(Lc) = AcL
ǫ
c − Lγ

c . (3)

Throughout the paper, we focus our attention on either of two types of allocation, depending

on the topic under study. We characterize the allocation that prevails with welfare-maximizing

local governments when studying the composition of cities in Subsection 3.3. We follow this

normative approach for the sake of simplicity. In all other cases, we characterize an equilibrium

allocation. We also impose the ‘full-employment condition’

∑
c∈C

Lc ≤ L. (4)

When agents are homogeneous and absent any friction to labor mobility, a spatial equilibrium

requires that there exists some common equilibrium utility level u∗ ≥ 0 such that

∀c ∈ C : (uc − u∗)Lc = 0, uc ≤ u∗, (5)

and (4) holds. That is to say, all non-empty sites command the same utility level at equilibrium.

The spatial equilibrium is “the single most important concept in regional and urban economics

[. . .] the bedrock on which everything else in the field stands” (Glaeser, 2008, p.4). We will

see later that this concept needs to be modified in a fundamental way when agents are hetero-

geneous. We maintain the free-mobility assumption throughout the chapter unless otherwise

specified.

The utility level (3) and the indifference conditions (5) can be expressed as follows:

uc = AcL
ǫ
c

(
1 − L

γ−ǫ
c

Ac

)
= u∗, (6)

which can be solved for the equilibrium city size L∗
c as a function of u∗. This equilibrium

is stable only if the marginal utility is decreasing in city size for all cities with a positive

equilibrium population, which requires that

∂uc

∂Lc
= ǫAcL

ǫ−1
c

(
1 − γ

ǫ

L
γ−ǫ
c

Ac

)
< 0 (7)

holds at the equilibrium city size L∗
c . It is easy to show from equations (6) and (7) that a stable

equilibrium necessarily requires γ > ǫ, that is, urban costs rise faster than urban productivity

as urban population grows. In that case, city sizes are bounded so that not everybody ends

up living in a single mega-city. We henceforth impose this parameter restriction. Empirically,

γ − ǫ seems to be small and this has important theoretical implications as shown later.
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Figure 7: City sizes with heterogeneous Ac terms.
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There exist many decentralised equilibria that simultaneously satisfy the full-employment

condition (4), the indifference condition (6), and the stability condition (7). The existence of

increasing returns to city size for low levels of urban size is the source of potential coordination

failures in the absence of large agents able to coordinate the creation of new cities, such as

governments and land developers.12 The precise equilibrium that will be selected – both in

terms of sites and in terms of city sizes – is undetermined, but it is a priori constrained by

the distribution of the Ac terms, by the number of sites at which cities can be developed,

and by the total population of the economy. Figure 7 illustrates a decentralized equilibrium

with three cities with different underlying tfps A1 > A2 > A3. This equilibrium satisfies

(4), (6), and (7) and yields utility u∗ to all urban dwellers in the urban system. Other

equilibria may be possible, with fewer or more cities (leading to respectively higher and lower

equilibrium utility). To solve the equilibrium selection problem, the literature has often relied

on the existence of large-scale, competitive land developers. When sites are homogeneous,

the equilibrium with land developers is both unique and (generally) efficient, arguably two

desirable properties (see Henderson, 1988, and Desmet and Henderson, 2014, this volume; see

also Becker and Henderson, 2000, on the political economy of city formation). When sites

are heterogeneous, any decentralized equilibrium (absent transfers across sites) will generally

12The problem of coordination failure stems from the fact that the utility of a single agent starting a new city is
zero, so that there is no incentive to do so. Henderson and Venables (2009) develop a dynamic model in which
forward-looking builders supply non-malleable housing and infrastructure, which are sunk investments. In such
a setting, either private builders or local governments can solve the coordination problem and the equilibrium
city growth path of the economy becomes unique. Since we do not consider dynamic settings and focus on static
equilibria, we require ‘static’ mechanisms that can solve the coordination problem. Heterogeneity of sites and
agents will prove useful here. In particular, heterogeneous agents and sorting along talent across cities may serve
as an equilibrium refinement (see Section 4). Also, adding a housing market as in Lee and Li (2013) allows to
pin-down city sizes.
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by inefficient because of monopoly power created by site differentiation. Providing a full

characterisation of such an equilibrium is beyond the scope of this chapter. 13

Equilibria feature cities that are larger than the size that a utility-maximizing local govern-

ment would choose. From a national perspective, some cities may be oversized and some

undersized when sites are heterogeneous.14 In order to characterize common properties of

decentralised equilibria, we first derive bounds on feasible city sizes. Let Lmax
c denote the

maximum size of a city, which is determined by the utility that can be secured by not residing

in a city and which we normalize to zero for convenience. Hence, plugging u∗ = 0 into (6) and

solving for Lc yields

Lmax
c = A

1
γ−ǫ
c . (8)

Let Lo
c denote the size that would be implemented by a local government in c that can restrict

entry but cannot price discriminate between current and potential residents, and that maxi-

mizes the welfare of its residents. This provides a lower bound to equilibrium city sizes by (7)

and γ > ǫ. Maximizing (3) with respect to Lc and solving for Lo
c yields

Lo
c =

(
ǫ

γ
Ac

) 1
γ−ǫ

. (9)

Equations (8) and (9) establish that both the lower and upper bounds of city sizes are propor-

tional to A
1/(γ−ǫ)
c . At any spatial equilibrium, the utility level u∗ is in [0, uoC ], where uoC is the

13In Behrens and Robert-Nicoud (2014a), we show that the socially optimal allocation of people across cities and
the (unique) equilibrium allocation with perfectly competitive land developers coincide and display the following
features: (i) only the most productive sites are developed and more productive sites host larger cities; (ii) (gross)
equilibrium utility is increasing in Ac and equilibrium utility net of equilibrium transfers to competitive land
developers is equalized across cities and weakly smaller than uoC , where uoC is the maximum utility that can be
achieved at the least productive populated urban site (thus all developers owning inframarginal sites make pure
profits); (iii) the socially optimal size of any city c is strictly lower than Lmax

c ; and (iv) the socially optimal size of
any city c is strictly larger than the size chosen by local governments Lo

c for all cities but the smallest, for which
the two may coincide. If C ⊆ R and if A(c) is a continuous variable, then u∗ ≤ uoC and L∗

C ≥ Lo
C . Note that

the allocation associated with local governments that can exclude people (implementing zoning restrictions, green
belt policies, or city boundaries) and that maximize the welfare of their current residents violates the indifference
condition (6) of the standard definition of the urban equilibrium because

u (Lo
c) =

γ − ǫ

ǫ

(
ǫ

γ
Ac

) γ

γ−ǫ

is increasing in Ac. That is, residents of high amenity places are more fortunate than others because their local
authorities do not internalise the adverse effects of restricting the size of their community on others. This raises
interesting public policy and political economy questions, for example, whether high amenity places should
implement tax and subsidy schemes to attract certain types of people and to expand beyond the size Lo

c choosen
in the absence of transfers. Albouy and Seegert (2012) make several of the same points and analyze under what
conditions the market may deliver too many and too small cities when land is heterogeneous and when there are
cross-city externalities due to land ownership and federal taxes.

14The optimal allocation requires to equalize the net marginal benefits across all occupied sites. Henderson
(1988) derives several results with heterogeneous sites, some of them heuristically. See also Vermeulen (2011) and
Albouy and Seegert (2012).
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maximum utility that can be achieved in the city with the smallest Ac (in the decentralized

equilibrium with three cities illustrated in Figure 7, uoC is uo3). Cities are oversized in any

equilibrium such that u∗ < u0
C because individuals do not take into account the negative impact

they impose on other urban dwellers at the margin when making their location decisions. This

coordination failure is especially important when thinking about the efficiency of industrial

co-agglomeration (Helsley and Strange, 2014), as we discuss in Section 3.3.1.

What can the foregoing results for the bounds of equilibrium city sizes teach us about the

equilibrium city size distribution? Rearranging (6) yields

L∗
c =

(
Ac −

u∗

L∗ǫ
c

) 1
γ−ǫ

. (10)

Equation (10) shows that L∗
c is smaller than, but gets closer to A

1/(γ−ǫ)
c , when L∗

c grows large

(to see this, observe that limL∗
c→∞ u∗/L∗ǫ

c = 0). Therefore, the upper tail of the equilibrium city

size distribution L∗
c inherits the properties of the tfp distribution in the same way as Lo

c and

Lmax
c do. In other words, the distribution of Ac is crucial for determining the distribution of

equilibrium sizes of large cities. We trace out implications of that property in the next section.

We can summarize the properties of the canonical model, characterized by equations (7) to

(10), as follows:

Proposition 1 (Equilibrium size) Let γ > ǫ > 0 and assume that the utility level enjoyed outside cities

is zero. Then any stable equilibrium features city sizes L∗
c ∈ [Lo

c ,Lmax
c ] and a utility level u∗ ∈ [0, uoC ].

Equilibrium city sizes are larger than the sizes chosen by local governments and both Lo
c and Lmax

c are

proportional to Ac. Finally, in equilibrium the upper tail of the size distribution of cities follows the

distribution of the tfp parameters Ac.

Four comments are in order. First, although all agents are free to live in cities, some agents

may opt out of the urban system. This may occur when the outside option of not living in

cities is large and/or when the number of potential sites for cities is small compared to the

population. Second, not all sites need to develop cities. Since both Lo
c and Lmax

c are increasing

in Ac, this is more likely to occur for any given number of sites if locational fundamentals are

good, since L∗
c is bounded by two terms that are both increasing in Ac.

15 Third, the empirical

link between city size and Ac (as proxied by an index of natural amenities or by geological

features) is borne out in the data, as illustrated by the two panels of Figure 1. Regressing

15It is reasonable to assume that sites are populated in decreasing order of productivity. Bleakley and Lin
(2012, p.589) show that ‘locational fundamentals’ are good predictors of which sites develop cities. Focusing on
‘breaks’ in navigable transportation routes (portage sites; or hubs in Behrens, 2007), they find that the “footprint
of portage is evident today [since] in the south-eastern United States, an urban area of some size is found nearly
every place a river crosses the fall line.” Those sites are very likely places to develop cities. One should keep in
mind, however, that with sequential occupation of sites in the presence of taste heterogeneity, path dependence is
an issue (Arthur, 1994). In other words, the most productive places need not be developed first, and depending
on the sequence of site occupation there is generally a large number of equilibrium development paths.
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log population on the msa amenity score yields a positive size elasticity of 0.057, statistically

significant at the 1% level. Last, we have argued in Section 2.2 that γ − ǫ is small in the

data. From Proposition 1 and from equation (10), we thus obtain that small differences in

the underlying Ac terms can map into large equilibrium size differences between cities. In

other words, we may observe cities of vastly different sizes even in a world where locational

fundamentals do not differ much across sites.

3.2.2 Size distribution of cities

One well-known striking regularity in the size distribution of cities is that it is roughly

lognormal, with an upper tail that is statistically indistinguishable from a Pareto distribution

with unitary shape parameter: Zipf’s law holds for (large) cities (Gabaix, 1999; Eeckhout, 2004;

Gabaix and Ioannides, 2004).16 Figure 6 depicts those two properties. The canonical model has

been criticized for not being able to deliver empirically plausible city size distributions other

than by making ad hoc assumptions on the distribution of Ac. Recent progress has been made,

however, and the model can generate such distributions based on fairly weak assumptions on

the heterogeneity of sites.17

Proposition 1 reveals that the size distribution of cities inherits the properties of the dis-

tribution of Ac, at least in the upper tail of that distribution. In particular, if Ac follows a

power law (or a lognormal distribution), then Lc also follows a power law (or a lognormal

distribution) in the upper tail. The question then is why Ac should follow such a specific

distribution? Lee and Li (2013) have shown that if Ac consists of the product of a large

number of underlying factors afc (where f = 1,2, . . . F indexes the factors) that are randomly

distributed and not ‘too strongly correlated’, then the size distribution of cities converges to a

lognormal distribution and is generally consistent with Zipf’s law in its upper tail. Formally,

this result is the static counterpart of random growth theory that has been widely used to

generate city size distributions in a dynamic setting (Gabaix, 1999; Eeckhout, 2004; Duranton,

2006; Rossi-Hansberg and Wright, 2007). Here, the random shocks (the factors) are stacked

in the cross-section instead of occuring through time. The factors can be viewed broadly

as including consumption amenities, production amenities, and elements linked to the land

supply in each location. Basically, they may subsume all characteristics that are positively

associated with the desirability of a location. Each factor can also depend on city size, i.e., can

16The lognormal and the Pareto have theoretically very different tails, but those are arguably hard to distinguish
empirically. The fundamental reason is that, by definition, we have to be ‘far’ in the tail, and any estimate there is
quite imprecise due to small sample size (especially for cities, since there are only very few very large ones).

17As shown later in Section 4.1, there are other mechanisms that may serve the same purpose when heteroge-
neous agents sort across cities. Hsu (2012) proposes yet another explanation, based on differences in fixed costs
across industries and central place theory, to generate Zipf’s law.
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be subject to agglomeration economies as captured by afcL
ǫf
c . Let

Ac ≡ ∏
f

afc and Lc ≡ ∏
f

L
ǫf
c (11)

and assume that production is given by (2). Let ǫ ≡ ∑f ǫf subsume the agglomeration effects

generated by all the underlying factors. Consistent with the canonical model, we assume that

congestion economies dominate agglomeration economies at the margin, i.e., γ > ǫ. Plugging

Ac and Lc into (8), and assuming that the outside option leads to a utility of zero so that

u∗ = 0, the equilibrium city size is L∗
c = A

1/(γ−ǫ)
c . Taking the logarithm, we then can rewrite

this as

lnL∗
c =

1

γ − ǫ

(
F

∑
f=1

α̂fc +
F

∑
f=1

αfc

)
, (12)

where we denote by α̂fc = ln afc − ln afc the demeaned log-factor, and where afc is the geo-

metric mean of the afc terms. As shown by Lee and Li (2013), one can then apply a particular

variant of the central-limit theorem to the sum of centered random variables ∑
F
f=1 α̂fc in (12)

to show that the city size distribution converges asymptotically to a log-normal distribution

lnN
(

1
γ−ǫ ∑

J
j=1 αfc,

σ2F
(γ−ǫ)2

)
, where σ2 is the limit of the variance of the partial sums.18

Figure 8: Lognormal distribution of msa amenity factors Ac, and factors-city size plot.
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As with any asymptotic result, the question arises as to how close one needs to get to

the limit for the approximation to be reasonably good. Lee and Li (2013) use Monte-Carlo

18As shown by expression (12), a key requirement for the result to hold is that the functional forms are all
multiplicatively separable. The ubiquitious Cobb-Douglas and ces specifications satisfy this requirement.
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simulations with randomly generated factors to show that: (i) the size distribution of cities

converges quickly to a lognormal distribution; and (ii) Zipf’s law holds in the upper tail of

the distribution even when the number of factors is small and when they are quite highly

correlated. One potential issue is, however, that the random factors do not correspond to

anything we can observe in the real world. To gauge how accurate the foregoing results are

when we consider ‘real factors’ and not simulated ones, we rely on usda county-level amenity

data to approximate the afc terms. We use the same six factors as for the amenity score in

Section 2.1 to construct the corresponding Ac terms.19

The distribution of the Ac terms is depicted in the left panel of Figure 8, which contrasts it

to a normal distribution with the same mean and standard deviation. As can be seen, even a

number of observable factors as small as six may deliver a lognormal distribution.20 However,

even if the distribution of factors is lognormal, they should be strongly and positively associated

with city size for the theory to have significant explanatory power. In words, large values of Ac

should map into large cities. As can be seen from the right panel of Figure 8, although there

is a positive and statistically significant association between locational fundamentals and city

sizes, that relationship is very fuzzy. The linear correlation for our 363 msas of log population

and the amenity terms is only 0.147, whereas the Spearman rank correlation is 0.142. In words,

only about 2.2% of the size distribution of msas in the us is explained by the factors underlying

our Ac terms, even if the latter are lognormally distributed.21 Log-normality of Ac does not

by itself guarantee that the resulting distribution matches closely with the ranking of city

sizes, which thus breaks the theoretical link between the distribution of amenities and the

distribution of city sizes. This finding also suggests that, as stated in Section 2.1, locational

fundamentals are no longer a major determinant of observed city size distributions in modern

economies. We thus have to find alternative explanations for the size distribution of cities, a

point we come back to later in Section 4.1.4.

19The factors are mean January temperature; mean January hours of sunlight; the inverse of mean July temper-
ature; the inverse of mean relative July humidity; the percent water surface; and the inverse of the topography
index. We take the log of each factor, center them, and sum them up to generate a county-specific value. We then
aggregate these county-specific values by msa, weighting each county by its land-surface share in the msa. This
yields msa-specific factors Ac which map into an msa size distribution.

20Using either the Shapiro-Wilk, the Shapiro-Francia, or the skewness and kurtosis tests for normality, we
cannot reject at the 5% level (and almost at the 10% level) the null hypothesis that the distribution of our msa
amenity factors is lognormal.

21 This may be due to the fact that we focus only on a small range of consumption amenities, but those at least
do not seem to matter that much. This finding is similar to the one by Behrens, Mion, Murata, and Südekum
(2012), who use a structural model to solve for the logit choice probabilities that sustain the observed city size
distribution. Regressing those choice probabilities on natural amenities delivers a small positive coefficient, but
which does not explain much of the city size distribution either.
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3.2.3 Inside the ‘black boxes’: Extensions and interpretations

We now use the canonical model to interpret prior work in relation to its key parameters ǫ, γ,

and Ac. To this end, we take a look inside the ‘black boxes’ of the model.

Inside ǫ. The literature on agglomeration economies, as surveyed in Duraton and Puga (2004)

and Puga (2010), provides microeconomic foundations for ǫ. For instance, if agglomeration

economies arise as a result of input sharing, where Yc is a ces aggregate of differentiated

intermediate inputs produced under increasing returns to scale (as in Ethier, 1982) using local

labor only, then ǫ = 1/(σ − 1), where σ > 1 is the elasticity of substitution between any pair

of inputs. If, instead, production of Yc requires the completion of an exogenous set of tasks

and urban dwellers allocate their time between learning, which raises their effective amount

of productive labor with an elasticity of θ ∈ (0,1), and producing (as in Becker and Murphy,

1982; Becker and Henderson, 2000b), then larger cities allow for a finer division of labor and

this gives rise to city-wide increasing returns, with ǫ = θ.22 The same result obtains in a

model where workers have to allocate a unit of time across tasks, and where learning-by-doing

increases productivity at a task with an elasticity of θ.

What is remarkable in all these models is that, despite having very different underlying

microeconomic mechanisms, they generate a reduced-form city-wide production function

given by (2) where only the structural interpretation of ǫ changes. The empirical literature

on the estimation of agglomeration economies, surveyed by Rosenthal and Strange (2004) and

Melo, Graham, and Noland (2009), estimates this parameter in the range of 0.02 to 0.1 for

a variety of countries and using a variety of econometric techniques. The consensus among

urban economists nowadays is that the ‘true’ value of ǫ is closer to the lower bound, especially

when unobserved heterogeneity is controlled for using individual data and when different

endogeneity concerns are properly addressed (see the chapter by Combes and Gobillon, 2014,

in this handbook).

Inside γ. The literature on the microeconomic foundations of urban costs, γ, is much sparser

than the one on the microeconomic foundations of agglomeration economies. In theory,

γ equals the elasticity of the cost per unit distance of commuting to the cbd in the one-

dimensional Alonso-Muth-Mills model (see also Fujita and Ogawa, 1982, and Lucas and Rossi-

Hansberg, 2002). It also equals the elasticity of utility with respect to housing consumption

in the Helpman (1998) model with an exogenous housing stock. The empirical literature on

the estimation of γ is scarcer still: we are aware of only Combes, Duranton, and Gobillon

(2014). This is puzzling since the relative magnitude of urban costs, γ, and of agglomeration

22Agglomeration economies may stem from either investment in vertical talent or in horizontal skill (Kim, 1989).
Larger markets favor investment in horizontal skills (which are useful in specific occupations) instead of vertical
talent (which is useful in any occupation) because of better matching in thicker markets.
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economies, ǫ, is important for understanding a variety of positive and normative properties

of the spatial equilibrium. Thus, precise estimates of both elasticities are fundamental. The

simplest models with linear cities and linear commuting costs suggest a very large estimate of

γ = 1. This is clearly much too large compared with the few available estimates.

Inside Ac. The tfp parameters Ac are related to the industrial or functional composition

of cities, the quality of their sites, and their commuting infrastructure. We have seen that

heterogeneity in site-specific underlying factors may generate Zipf’s law. However, just as

the random growth version of Zipf’s law, that theory has nothing to say about the microe-

conomic contents of the Ac terms. Heterogeneity in sites may stem from many underlying

characteristics: production and consumption amenities, endowments, natural resources, and

locational advantage in terms of transportation access to markets. This issue has received some

attention in the new economic geography literature, but multi-region models are complex and

thus have been analyzed only sparsely. The reason is that with multiple cities or regions, the

relative position matters for access to demand (a positive effect) and exposure to competition

(a negative effect). The urban literature has largely abstracted from costly trade between cities:

trade costs are usually either zero or infinite, just as in classical trade theory.

Behrens, Lamorgese, Ottaviano and Tabuchi (2009) extend Krugman’s (1980) ‘home market

effect’ model to many locations. There is a mobile increasing returns to scale (irs) sector that

produces differentiated varieties of a good that can be traded across space at some cost; and

an immobile constant returns to scale (crs) sector that produces some freely traded good. The

latter sector differs exogenously by productivity across sites, with productivity 1/zc in site c.

Sites also differ in their relative advantage for the mobile sector as compared to the outside

sector: ac = (1/mc)/(1/zc). Finally, locations differ in access to each other: transportation

costs across all sites are of the iceberg type and represented by some C × C matrix Φ, where

the element φc,c′ is the freeness of trade between sites c and c′. Specifically, φc,c′ ∈ [0,1], with

φc,c′ = 0 when trade between c and c′ is prohibitively costly and φc,c′ = 1 when bilateral

trade is costless. Behrens, Lamorgese, Ottaviano and Tabuchi (2009) show that the equilibrium

per capita output of site c is given by yc = Ac, with Ac ≡ Ac(Φ, {ac}c∈C ,1/zc). Per capita

output is increasing in the site’s productivity, which is a complex combination of its own

productivity parameters (1/zc and ac), as well as some spatially weighted combination of

the productivity parameters of all other sites, interacted with the spatial transportation cost

structure of the economy. Intuitively, sites that offer better access to markets – that are closer to

more productive markets where incomes are higher – have a locational advantage in terms of

access to consumers. However, those markets are also exposed to more competition from more

numerous and more productive competitors, which may partly offset that locational advantage.

The spatial allocation of firms across sites, and the resulting productivity distribution, crucially
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depends on the equilibrium trade-off between these two forces.23

Another model that can be cast into our canonical mould is that by Desmet and Rossi-

Hansberg (2013). In their model, per capita output of the homogeneous numeraire good in city

c is given by

yc = AcLck
1−θ
c hθc , (13)

where kc and hc are per capita capital and hours worked, respectively; Ac is a city-specific

productivity shifter; and Lc = Lǫ
c is the agglomeration externality. Observe that equation (13)

is identical to our expression (1), except for the endogenous labor-leisure choice: consumers

are endowed with one unit of time that can be used for work, hc, or leisure, 1 − hc. They have

preferences vc = ln uc + ψ ln(1 − hc) + ac that are log-linear in consumption of the numeraire,

uc (which is as before income net of urban costs), leisure, and consumption amenities ac.

In each city c of size Lc, a local government levies a tax τc on total labor income Lcwchc

to finance infrastructure that is used for commuting. A consumer’s consumption of the

numeraire good is thus given by uc = wchc(1 − τc) − Rc, where Rc are the per capita urban

costs (commuting plus land rents) borne by a resident of city c. Assuming that cities are

monocentric, and choosing appropriate units of measurement, yields per capita urban costs

Rc = L
γ
c .

Consumers choose labor and leisure time to maximize utility and producers choose labor

and capital inputs to minimize costs. Using the optimal choice of inputs, as well as the

expression for urban costs Rc, then yields per capita consumption and production as follows:

uc = θ(1 − τc)yc − Lγ
c and yc = κA

1
θ
c L

ǫ
θ
c hc,

where κ > 0 is a bundle of parameters. Desmet and Rossi-Hansberg (2013) show that hc ≡
hc(τc,Ac,Lc) is a monotonically increasing function of Lc: agents work more in bigger cities

(Rosenthal and Strange, 2008b). Thus uc = Achc(τc,Ac,Lc)L
ǫ/θ
c −L

γ
c , where Ac ≡ Ac(τc,Ac) =

κθ(1 − τc)A1/θ
c . If utility was linear in consumption and labor supply was fixed (as we have

assumed so far), we would obtain an equilibrium relationship that is structurally identical to

equation (3). The cross-city heterogeneity in taxes, τc, and productivity parameters, Ac, serves

to shift up or down the equilibrium city sizes via the tfp term Ac.
24 However, labor supply

is variable and utility depends on income, leisure, and consumption amenities. Hence, the

spatial equilibrium condition requiring the equalization of utility is slightly more complex and

23The same holds in the model by Behrens, Mion, Murata, and Südekum (2012). In that model, cross-city
differences in market access are subsumed by the selection cutoff for heterogeneous firms. We deal more
extensively with selection effects in Section 4.2.

24The full model of Desmet and Rossi-Hansberg (2013) is more complicated since they also endogenize taxes. To
pin them down, they assume that the local government must provide a quantity of infrastructure proportional to
the product of wages and total commuting costs in the city, scaled by some city-specific government inefficiency
gc. Assuming that government budget is balanced then requires that τc ∝ gcL

γ
c , i.e., big cities with inefficient

governments have higher tax rates.
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given by:

ln
[
Achc(τc,Ac,Lc)L

ǫ
θ
c − Lγ

c

]
+ ψ ln [1 − hc(τc,Ac,Lc)] + ac = u∗, (14)

for some u∗ that is determined in general equilibrium by the mobility of agents. The equilib-

rium allocation of homogeneous agents across cities depends on the cross-city distribution of

three elements: (i) local taxes, τc, also referred to as ‘labor wedges’; (ii) exogenous productivity

differences, Ac; and (iii) differences in exogeneous consumption amentities, ac. Quite naturally,

the equilibrium city size L∗
c is increasing in Ac and ac, and decreasing in τc.

The key contribution of Desmet and Rossi-Hansberg (2013) is to take their spatial general

equilibrium model (14) in a structural way to the data.25 To this end, they first estimate the

productivity shifters Ac and the labor wedges τc from their structural equations, and back out

the amenities ac such that – conditional on the labor wedges and productivity shifters – the

model replicates the observed distribution of city sizes for 192 us cities in 2005-2008. They

then evaluate the correlation between the implied ac and a variety of quality-of-life measures

usually used in the literature. Having thus calibrated the model, they finally perform an ‘urban

accounting’ exercise. The objective is to quantify the respective contribution of the different

wedges – labor τc, productivity Ac, and amenities ac – to city sizes, to welfare, and to the city

size distribution. This is achieved by simulating counterfactual changes when either one of the

three channels – τc, ac, or Ac – is shut down, i.e., what happens if “we eliminate differences in a

particular characteristic by setting its value to the population weighted average.” (Desmet and

Rossi-Hansberg, 2013, p. 2312). They obtain large population reallocations but small welfare

effects.26 In words, the movement of agents across cities in response to possibly large shocks

yields only fairly small welfare gains (see also Behrens, Duranton and Robert-Nicoud, 2014).

These results are quite robust to the inclusion of consumption and production externalities in

the us data. By contrast, applying their model to Chinese data, Desmet and Rossi-Hansberg

(2013) obtain fewer population movements but larger welfare effects.

25For more information on the use of structural methods in urban economics, see the chapters by Holmes
and Sieg (2014) and Albouy and Rappaport (2014) in this volume of the handbook. Behrens, Mion, Murata,
and Südekum (2012) perform a similar analysis within a very different setting. They use a multi-city general
equilibrium model that builds on the monopolistic competition framework developed by Behrens and Murata
(2007). In that framework, heterogeneous firms produce differentiated varieties of a consumption good that can
be traded at some cost across all cities. The key objective of Behrens, Mion, Murata, and Südekum (2012) is to
quantify how trade frictions and commuting costs affect individual city sizes, the size distribution of cities, and
aggregate productivity. They find that the city size distribution is fairly stable with respect to trade frictions and
commuting costs.

26Behrens, Mion, Murata, and Südekum (2012) reach the opposite conclusion in a model with heterogeneous
agents. Shutting down trade frictions and urban frictions, they find that population reallocations are rather small,
but that welfare and productivity gains may be substantial. As pointed out by Desmet and Rossi-Hansberg (2013),
the rather small welfare effects in their model are driven by their assumption of homogeneous agents.
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3.3 The composition of cities: Industries, functions, and skills

Until now, cities only differ in terms of exogenous fundamentals. That cities also differ in

their industrial structure is probably the most obvious difference that meets the eye. Cities

further differ in many other dimensions, especially in the functions they perform and in whom

inhabits them. In this section, we cover recent studies that look at the interactions between

agglomeration economies and the industrial, functional, and skill composition of cities. Abdel-

Rahman and Anas (2004) and Duranton and Puga (2000) offer comprehensive treatments of the

earlier literature, and many of the results we derive on industry composition belong to it. With

respect to industry composition, the production mix of large cities is more diversified than that

of small ones (Henderson, 1997; Helsley and Strange, 2014). Also, cities large and small do

not specialize in the same sectors, and their industrial composition can change rapidly as there

is substantial churning of industries (Duranton, 2007).27 Regarding functional composition,

large firms increasingly slice up the value chain and outsource tasks to independent suppliers.

Cities of different sizes specialize in different tasks or functions along the value chain, with

larger cities attracting the headquarters and small cities hosting production and routine tasks

(Duranton and Puga, 2005; Henderson and Ono, 2008). Finally, cities differ in terms of their

skill composition. Large cities attract a larger fraction of highly skilled workers than small

cities do (Combes, Duranton, and Gobillon, 2008; Hendricks, 2011).

3.3.1 Industry composition

We modify equation (1) as follows. Consider an economy with I different industries. Let pi

denote the price of good i, which is freely traded, and let Yi denote physical quantities. Then

the value of output of industry i in city c is

piYic = piJcUcLicAicLic, (15)

where Lic now captures the extent of localization economies (namely, to what extent local employ-

ment in a given industry contributes to scale economies external to individual firms belonging

to that industry), Uc captures the extent of urbanization economies (namely, to what extent local

employment, whatever its industry allocation, contributes to external scale economies), and

Jc captures the external effects of industry diversity, following Jacobs (1969). In (15), we have

made the assumption that urbanization and Jacobs externalities affect all sectors in the same

way; this is for simplicity and to avoid a proliferation of cases.

An equilibrium in this model requires that: (i) workers of any city c earn the same nominal

wage in all active industries in that city, i.e., wc ≥ piJcUcLicAic with equality for all i such that

Lic > 0; and (ii) that they achieve the same utility in all populated cities, i.e. uc = wc −L
γ
c = u∗

27Smaller cities usually produce a subset of the goods produced in larger cities. See the ‘number average size
rule’ put forward by the empirical work of Mori, Nishikimi, and Smith (2008).
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for some u∗, if Lc > 0. The simplest functional forms consistent with localisation economies

and urbanisation economies are Lic = Lν
ic and Uc = Lǫ

c, respectively. A simple functional form

for Jacobs externalities that enables us to encompass several cases studied by the literature is

given by

Jc =

[
I

∑
i=1

(
Lic

Lc

)ρ
] 1

ρ

, (16)

where ρ < 1 is a parameter governing the complementarity among the different indus-

tries: ρ is negative when employment in various industries strongly complement each other,

positive when they are substitute, and tends to unity when variety does not mater (since

limρ→1 Jc = 1).28 In (16), diversification across industries brings external benefits to urban

labor productivity. To see this, note that Jc ∈ {0,1} if c is fully specialized in some industry,

and Jc = I−1+1/ρ when all industries are equally represented.29 In the latter case, Jc > 1

(diversification raises urban productivity) by ρ < 1. Observe also that (16) is homogeneous of

degree zero by construction so that it is a pure measure of the industrial diversity of cities (size

effects are subsumed in Uc and Lic).

Specialization. Consider first the model of Fujita and Thisse (2013, chapter 4). In this case,

Jacobs and urbanization economies are absent (ρ = 1 and ν = 0) and there are no exogenous

differences across sites (Aic = Ai, for all c). Output of any industry is freely traded among

all cities. Thus, there is no benefit in bringing two or more different industries in the same

city (Henderson, 1974). A simple proof of this is by contradiction. Assume that an arbitrary

city of size Lc is hosting at least two different industries. The per capita urban cost is Lγ
c .

Per capita gross income of workers in industry i is equal to AiL
ǫ
ic. The fact that there are

more than one industry in c implies Lic < Lc. Consider next another city c′ specialized in

industry i, with employment Lc′ = Lic′ = Lic. Then, per capita income of workers in industry

i net of urban costs is equal to AiL
ǫ
ic′ − L

γ
ic, which is strictly larger than AiL

ǫ
ic − L

γ
c by Lic′ =

Lic and Lic < Lc. Hence, a competitive land developer could profitably enter and create a

specialized city c′ and attract the workers of industry i who are located in c. No diversified

city exists in equilibrium. The unique spatial equilibrium of this model of urban systems has

cities specialized by industry, and their (optimal) sizes depends only on the industry in which

they specialize. We can therefore label cities by their industry subscripts only and write:

Proposition 2 (Industrial specialization) Assume that ρ = 1, ν = 0, and Aic = Ai for all i and

all c. Then all cities are specialized by industry at the unique spatial equilibrium with competitive land

28See Helsley and Strange (2011) for recent microeconomic foundations to Jacobs externalities.
29If Lic = Lc for some i, then Jc = 0 if ρ ≤ 0 and Jc = 1 if ρ > 0.
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developers, and their size is optimal:

Li =

(
pi
ǫ

γ
Ai

) 1
γ−ǫ

. (17)

The proof of the first part (specialization) is given in the text above. The second part follows

from the fact that competitive land developers create cities that offer the largest possible equi-

librium utility to agents which, given specialization, yields the same result than in the foregoing

section where we considered only a single industry. Note that the distribution of Lγ−ǫ
c need

no longer follow the distribution of Ac in a multi-industry environment; (endogenous) prices

in (17) may break the link between the two that Proposition 1 emphasizes. Note that cities are

fully specialised and yet their size distribution approximately follows Zipf’s law in the random

growth model of Rossi-Hansberg and Wright (2007).

Industry assignment. The literature on the assignment of industries, occupations, and/or skills

to cities dates back to Henderson (1974, 1988). Ongoing work by Davis and Dingel (2013) does

this in a multi-dimensional environment using the tools of assignment theory (Sattinger, 1993;

Costinot, 2009).30 Here, we are interested in the assignment of industries to urban sites. In

order to connect tightly with the framework we have developed so far, we assume that indus-

tries are distinct in their degree of localization economies, now given by ǫi. Furthermore, the

suitability of each site for an industry may differ, and there is a large finite set C = {1, 2, . . . ,C}
of sites. We maintain ν = 0 and ρ = 1. We denote by Aic the site-specific tfp shifter for

industry i. Assume that all goods can be traded at no cost, so that nominal wage net of urban

cost provides a measure of utility. We further assume that all goods are essential, i.e., they

must be produced in some city. There are local governments that create cities in order to

maximize utility of their residents. Agents are mobile between sectors within each city. We

ignore integer constraints and assume that all cities are fully specialised (this is literally true if

C is a continuum).

We solve the problem in three steps. First, we solve for the city size chosen by each

local government c conditional on industry i. As shown by Proposition 2, if cities are fully

specialized then the size chosen by the local government of a city developed at site c and

specialized in industry i is given by (17). It offers utility

uic =

(
γ

ǫi
− 1

)(
pi
ǫi

γ
Aic

) γ
γ−ǫi

(18)

to its residents. Second, local governments choose to specialize their city in the industry that

yields the highest utility, namely, they solve maxi uic. Cities thus specialize according to their

comparative advantage. The nature of this comparative advantage is a mixture of Ricardian

30See also Holmes and Stevens (2014) for an application to the spatial patterns of plant-size distributions, and
Redding (2012) for an application to regional inequality and welfare.
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technology and external scale economies. To see the first part of this statement, let us get rid of

differences in external scale economies and temporarily impose ǫi = ǫ for all i. Consider two

cities, c and d. Then city c specializes in the production of good i and city d specializes in the

production of good j if the following chain of comparative advantage holds:

Acj

Aci
<
pi

pj
<
Adj

Adi
.

This is the well-known chain of Ricardian comparative advantage, as was to be shown.

It is not possible to write such an expression for the more interesting case ǫi 6= ǫj . The

solution here is to tackle the problem as an assignment problem where we match industries

to cities following the methodology developed by Costinot (2009). This is our third and final

step. Taking logs and differentiating (18), it is easily verified that

∂2 ln uic
∂ǫi∂Aic

=
γ

(γ − ǫi)2

1

Aic
> 0,

i.e., utility is log-supermodular in industry-site characteristics Aic and agglomeration

economies ǫi. The outcome is then an allocation with positive assortative matching between

industries and cities. The quality of urban sites and the strength of agglomeration economies

are complements: high-Aic cities specialize in the production of high-ǫi goods.

The results above crucially hinge on the complementarity between industries and sites,

the presence of local governments (which can exclude migrants from joining a city), and

the absence of Jacobs externalities. When agents are free to migrate across cities, and in

the presence of cross-industry externalities, Helsely and Strange (2014) show that inefficient

co-agglomeration of industries generally takes place. Migration is a very weak disciplining

device for efficiency. Specialized cities are generally too big, whereas co-agglomerated cities

are generally too big and do not contain the right mix of industries.31 Part of the problem with

multiple industries and cross-industry externalities stems from the fact that distributions matter,

i.e., the optimal location of one industry is conditional on the distribution of industries across

cities. In that case, (log)-supermodularity may fail to hold, which can lead to many patterns

that do not display regular assignments of industries to sites. A similar issue arises in the

context of the sorting of heterogeneous workers that we study in Section 4.

Urban sectoral specialization fully accounts for city size differences in this model. However,

that cities are fully specialized is counterfactual, and so industry specialization cannot be the

main ingredient of a reasonable static explanation for Zipf’s law (fact 6). The model would at

31The result about the inefficiency of co-agglomeration has important implications for empirical research.
Indeed, emprical work on agglomeration economies increasingly looks at co-agglomeration patterns (Ellison,
Glaeser, and Kerr, 2010) to tease out the relative contribution of the different Marshallian mechanisms for
agglomeration. The underlying identifying assumption is that the observed co-agglomeration is ‘efficient’ so
that nominal factor returns fully reflect the presence and strength of agglomeration economies. As shown by
Helsely and Strange (2014), this will unfortunately not be the case.
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least need to be combined with a ‘random growth component’ in the spirit of Lee and Li (2013),

as discussed in Section 3.2.2, or some self-selection constraints of heterogeneous workers in the

presence of sorting, as discussed in Section 4.1.4. Alternatively, we can consider under what

conditions cities end up with a diversified industrial structure in equilibrium.

Diversification. In general, the optimal industry composition of urban employment depends

on the tension between foregone localization economies and higher urban costs, on the one

hand, and the Jacobian benefits of diversity – or city-wide ‘economies of scope’ to use Abdel-

Rahman and Anas’ (2004) terminology – on the other hand.32 To see this, assume that all

industries are symmetric and all sites are homogeneous (Aic = A > 0, for all c and all i). Then

the optimal allocation implies pi = p for all i. Without further loss of generality, we choose

units so that pA = 1. Consider two cities of equal size L. City c is fully specialised (Lic = L

for some i, and Ljc = 0, for all j 6= i) and city c′ is fully diversified (Lic′ = L/I for all i). Urban

costs are the same in both cities under our working assumption. The nominal wage in city c is

equal to wc = Lǫ+ν , whereas the nominal wage in city c′ is equal to wc′ = Lǫ+νI−ǫI−1+1/ρ by

inserting Jc′ = I−1+1/ρ and Lic′ = L/I into (15). It immediately follows that wc′ > wc if and

only if 1 + ǫ < 1/ρ, that is, the optimal city is diversified if the benefits from diversification,

1/ρ, are large relative to the scope of localisation economies, ǫ. Since ǫ > 0, the foregoing case

arises only if ρ < 1, i.e., if there is complementarity among sectors.33

3.3.2 Functional composition

The slicing up of the value chain across space (‘offshoring’) and beyond firm boundaries

(‘outsourcing’) also has implications for the composition of cities (Ota and Fujita, 1993; Rossi-

Hansberg, Sarte, and Owens, 2009). Duranton and Puga (2005) and Henderson and Ono (2008)

report that cities are increasingly specialized by function, whereas Rossi-Hansberg, Sarte, and

Owens (2009) report a similar pattern witin cities: urban centers specialize in complex tasks

and the suburbs specialize in the routine (back office) tasks.

In this subsection, we are interested in the location of the various activities of firms and

no longer in the industrial composition of cities. We thus start by considering a single,

representative industry. We briefly turn to the multi-industry case at the end of this subsection.

Representative industry. We follow Duranton and Puga (2005) and Ota and Fujita (1993) and

consider the location decisions of a firm regarding its various tasks in light of the proximity-

32See also Abdel-Rahman and Fujita (1993). By assuming free trade among cities, we omit another potential
reason for the diversification of cities: to save on transportation costs (Abdel-Rahman, 1996).

33The assumption ρ > 1 is the opposite to Jane Jacobs’ and is consistent with Sartre’s view that ‘Hell is other
people’, namely, diversity lowers the productivity of everybody. In this case, Jc = I−1+1/ρ < 1 if c is fully
diversified and Jc = 1 if c is fully specialized. Clearly, urban labor productivity is higher in the former case than
in the latter. This force comes in addition to urban congestion forces and, therefore, also leads to specialized cities.
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localization tradeoff. These authors adopt a technological view of the firm in which the costs

of coordinating a firm’s headquarter and production facilities are increasing in the geograph-

ical distance separating them. Henderson and Ono (2008) report empirical evidence that is

consistent with this view.

We encapsulate these models into our framework as follows. Each firm conducts headquar-

ter and manufacturing activities, and each activity benefits from its own localization economies.

That is to say, the proximity of the headquarters of other firms enhances the productivity of

the headquarter of a typical firm, and the proximity of the manufacturing plants of other firms

enhances the productivity of its own manufacturing plant. There are two types of tasks, M

(for ‘manufacturing’) and H (for ‘headquarter’), each being specific to one type of activity. All

workers in the economy are equally able to perform either task. Let the subscripts v and f

pertain to vertically integrated and to functionally specialized cities, respectively. The output

of the representative firm of a typical industry is equal to

Yv = A (MM)λ (HH)1−λ (19)

if this firm locates its headquarter and manufacturing tasks in the same city (i.e., this city is

vertically integrated), and Yf = Yv/τ if it locates these units in two distinct cities (i.e., cities are

vertically disintegrated). In expression (19), 0 < λ < 1 is the share of manufacturing labor in

production, M and H are manufacturing and headquarter employment of the representative

firm, M and H denote localization economies specific to each type of task, and τ > 1 is a

Samuelson ‘iceberg’ cost of coordinating remote headquarter and manufacturing activities. As

before, the simplest specification for localization economies is M = M ǫ and H = Hν , where ǫ

and ν are the size elasticities of agglomeration economies specific to plants and to headquarters,

respectively. To stress the main insights of the model in the simplest possible way, we impose

symmetry between tasks by assuming ν = ǫ and λ = 1/2.34

Let h ≡ H/(H +M) denote the share of workers performing headquarter tasks in produc-

tion, and let L ≡ H +M denote the size of the workforce. The model being symmetric in

H and M , we can anticipate that the optimal allocation is symmetric, too. We may write per

capita (average) utility as

u(Iv) = τ Iv−1A [(1 − h)h]
1+ǫ

2 Lǫ

−IvL
γ − (1 − Iv)L

γ
[
(1 − h)1+γ + h1+γ

]
, (20)

where Iv = 1 if firms are spatially vertically integrated and Iv = 0 if headquarter and

manufacturing activities are located in distinct, functionally specialized cities. The key tradeoff

34In practice, agglomeration effects are stronger for high-end services (Combes, Duranton, and Gobillon, 2008;
Davis and Henderson, 2008; Dekle and Eaton, 1999). Note that υ > ǫ would imply that service cities are larger
than manufacturing cities, in line with evidence. It can also explain part of the painful adjustment of many former
manufacturing powerhouses like Detroit and Sheffield. We thank Gilles Duranton for pointing this out to us.
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between proximity (due to τ > 1) and local congestion (due to h1+γ + (1 − h)1+γ < 1) is clearly

apparent in (20).

Consider first the case of a vertically integrated city, namely, a city that contains vertically

integrated firms only (Iv = 1). The optimal size and composition of that city are equal to

Lv =

(
ǫ

γ

A

21+ǫ

) 1
γ−ǫ

and hv =
1

2
, (21)

respectively. Observe that the expression characterizing the optimal integrated city size in (21)

is structurally identical to (9) in the canonical model.

Turning to the case Iv = 0 of functional cities, namely of cities that specialize fully in

either headquarter or manufacturing activities, we again have hf = 1/2 so that the optimal

headquarter- and manufacturing-city sizes are both equal to

Hf = Mf =

(
ǫ

γ

A

2τ

) 1
γ−ǫ

. (22)

We next compare the normative properties of the allocations in (21) and (22) by plugging the

relevant values into the expressions for u(Iv) in (20). In both cases, congestion costs are equal

to a fraction ǫ/γ of output at the optimal allocations. Both output and congestion costs are

lower in the allocation with functional cities than in the allocation with vertically integrated

cities. Which of the two dominates depends on the parameters of the model. Specifically,

average utility (consumption of the numeraire good Y ) with vertically integrated cities and

cities specialized by function are equal to

uv ≡ u(1) =
γ − ǫ

ǫ

(
ǫ

γ

A

21+ǫ

) γ
γ−ǫ

and uf ≡ u(0) =
γ − ǫ

ǫ

(
ǫ

γ

A

2τ

) γ
γ−ǫ

, (23)

respectively. The following results then directly follow by inspection of (21), (22), and (23):

Proposition 3 (Functional specialization) Functional cities are larger than vertically integrated cities

and yield higher utility if and only if coordination costs are low enough and/or localization economies

are strong enough:

uf > uv and Hf = Mf > Lv if and only if 1 ≤ τ < τvf ≡ 2ǫ. (24)

When coordination costs are low, the output foregone by coordinating manufacturing ac-

tivities from a remote headquarter is low. Keeping in mind that the congestion cost is a

constant proportion of output, it then follows that the size of functional cities, and the per

capita consumption of the numeraire good, are decreasing in the coordination costs. Strong

agglomeration economies by function magnify the level of output lost or saved relative to the

allocation with vertically integrated cities.
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Duranton and Puga (2005) insist on the time-series implication of Proposition 3 (see also the

chapter by Desmet and Henderson, 2014, this volume): cities increasingly specialize by function

as coordination costs fall over time due to technical change in communication technologies. We

can also stress the following cross-sectional implication of Proposition 3 when industries differ

in the scope of agglomeration economies: given τ , an industry with little scope for localization

economies (a low ǫ) is more likely to be vertically integrated and to form vertically integrated

cities than an industry with a higher ǫ.

Functional composition with several industries. We encapsulate (15) and (16) into (19) in order

to study the determinants of the localization of headquarter and manufacturing services

of different industries in the presence of urbanization and Jacobs externalities. Specifically,

consider I symmetric industries with production functions

Yi(Iv) = τ Iv−1A (MMi)
1
2 (HHi)

1
2 , where M =

(
I

∑
j=1

M
ρ
j

) ǫ
ρ

and H =

(
I

∑
j=1

H
ρ
j

) ǫ
ρ

.

We make two observations about this specification. First, the model is symmetric across

industries and production factors. We readily anticipate that any optimal allocation will

be symmetric in these variables, too. Second, this specification assumes away localization

economies. Urbanization economies operate if ǫ > 0 and so do Jacobs economies if ρ < 1.

Assuming these equalities hold implies that all industries will be represented in all optimal

cities. Then the only relevant question is whether the planner creates vertically integrated

cities or functionally specialized cities.

Assume that preferences are symmetric in all goods, so that pi = p for all i. Let p ≡ 1 by

choice of numeraire. Output in a vertically integrated city of size L is equal to

Yv ≡
I

∑
i=1

Yi(1) = IA

[
I

(
L

2I

)ρ] ǫ
ρ L

2I
= AI(

1
ρ−1)ǫ

(
L

2

)1+ǫ

,

where the first equality makes use of the symmetry of the model (and of Mi = Hi = L/(2I) for

all i in particular) and the second equality simplifies the expressions. Maximizing per capita

output net of urban costs u = Y /L− Lγ with respect to L and solving for L yields

Lv =

[
ǫ

γ

AI(
1
ρ−1)ǫ

21+ǫ

] 1
γ−ǫ

,

which is identical to (21) for I = 1. Turn now to the joint output of a pair of functional cities (a

manufacturing and a headquarter city). Let M = H = L/2 denote the (common) size of these

cities. Then joint output is equal to

Yf ≡
I

∑
i=1

Yi(0) =
A

τ
I(

1
ρ−1)ǫ

(
L

2

)1+ǫ

.
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Maximising per capita output net of urban costs u = Y /L − 2(L/2)γ with respect to L and

solving for L/2 yields

Mf = Hf =

[
ǫ

γ

AI(
1
ρ−1)ǫ

2τ

] 1
γ−ǫ

,

which is again identical to (22) for I = 1. The per capita utility levels uv and uf evaluated at

the optimal city sizes are proportional to the expressions in (23), namely,

uv ≡ u(1) =
γ − ǫ

ǫ

[
ǫ

γ

AI(
1
ρ−1)ǫ

21+ǫ

] γ
γ−ǫ

and uf ≡ u(0) =
γ − ǫ

ǫ

[
ǫ

γ

AI(
1
ρ−1)ǫ

2τ

] γ
γ−ǫ

.

It then immediately follows that the conditions in (24) hold in the current setting, too. We

conclude that cities specialize by function if and only if coordination costs are low enough

and/or if urbanization economies are strong enough.

Nursery cities and the life cycle of products. Our framework is also useful to link the life cycle

of products to the location of tasks along the value chain. Duranton and Puga (2001) provide

evidence from France and the us that firms locate their innovation activities in large and diverse

‘nursery cities’ and afterwards relocate the production tasks to smaller manufacturing cities

specialized by industry. The reason is that firms face uncertainty and need to discover their

optimal production process in the early stages of the product life cycle and afterwards want

to exploit localization economies in production once they have discovered and mastered the

optimal mass production process.

Duranton and Puga (2001) propose a dynamic model with microeconomic foundations that

accounts for these facts. It is, however, possible to distill the spirit of their approach using our

static framework. The development phase of a product consists of trials-and-errors and the

local experiences of all industries are useful to any other industry: everybody learns from the

errors and successes of everyone else.35 Thus, at the innovation stage urbanization and Jacobs

economies dominate, while localization economies are relatively unimportant. In the context of

equations (15) and (16), the presence of urbanization and Jacobs economies at the development

stage imply νI > 0 (size matters) and ρI < 1 (diversity matters), where the superscript I

stands for ’innovation’. Conversely, localization economies prevail for manufacturing tasks,

implying ǫM > 0, while urbanization and Jacobs externalities are relatively unimportant at the

production stage: νM = 0 and ρM = 1, where the superscript M stands for ’manufacturing’.

35Using a model where the success or failure of firms shapes the beliefs of entrants as to how suitable a region
is for production, Ossa (2013) shows that agglomeration may take place even when there are no external effects
in production. Large cities may in part be large because they signal to potential entrants that they provide an
environment amenable to the successful development of new products.
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3.3.3 Skill composition

Hendricks (2011) reports that large us cities are relatively skill-abundant and that 80% of the

skill abundance of a city is unrelated to its industry composition. Put differently, all industries

are more skill intensive in large cities than in small cities. Furthermore, the urban premium

of skilled workers is unrelated to the industry that employs them, which is suggestive of the

existence of human capital externalities that operate broadly across industries in the city (see

Moretti, 2004, for a survey of the empirical evidence).

To see how our framework can make sense of these patters, assume that there are two types

of labor in the economy, unskilled workers and skilled workers. Let Lc denote the size of

a city, and hc denote its fraction of skilled workers. Assume that the per capita output of a

representative industry net of urban costs is equal to

uc = Ac [Lch
ρ
c + (1 − hc)

ρ]
1
ρ − Lγ

c ,

where ρ < 1 and Lc = Lǫ
c. This expression assumes skill-biased scale effects, whereas local

production amenities Ac are Hicks-neutral as before. Maximizing per-capital output net of

urban costs with respect to the composition and the size of an arbitrary city yields

Lc =

(
hc

1 − hc

) 1−ρ
ǫ

and Lγ−ǫ
c =

ǫ

γ

Ac

ρ
hρc(1 − hc)

− (1−ρ)2

ρ , (25)

respectively. City size, Lc, and city skill abundance, hc, are positively correlated by the

first expression in (25), and both are increasing in local amenities Ac under some regularity

condition.36 This generates the positive correlation between skill abundance and city size

uncovered by Hendricks (2011).

While the foregoing mechanism relies on the heterogeneity in the tfp terms, Ac, and

skill-biased scale effects to generate the positive correlation between size and skills, we now

show that the sorting of heterogeneous individuals across cities generates the same relationship

without imposing such assumptions.

4. Sorting and selection

Our objective in this section is to propose a framework of sorting of heterogeneous agents

across cities and selection of heterogeneous agents within cities. In what follows, we refer to

36Using both expressions to eliminate Lc yields the following implicit equation for hc as a function of Ac and
of the other parameters of the model:

h
(1−ρ) γ

ǫ
−1

c

(1 − hc)
(1−ρ)( γ

ǫ
− 1

ρ
)
= Ac

ǫ

ργ
.

If γ
ǫ > min{ 1

1−ρ , 1
ρ} then hc is increasing in Ac.
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sorting as the heterogeneous location choices of heterogeneous workers or firms. We refer

to selection as either an occupational choice (workers) or a market-entry choice (firms). Our

framework is simple enough to highlight the key issues and problems associated with those

questions and to encompass recent models that look at them in greater detail. We also highlight

two fundamental difficulties that plague sorting and selection models: the general equilibrium

feedbacks that arise in cities and the choice of functional forms. In sorting models, general

equilibrium feedbacks preclude in many cases supermodularity, thus making the assignment

problem of heterogeneous agents to cities a fairly complicated one. In selection models,

selection effects can go in general either way, thereby precluding clear comparative static

results in the absence of specific functional forms. Although several tricks have been used

in the literature to cope with both issues, we argue that any analysis of sorting across cities

and selection within cities is complicated and unlikely to yield very robust theoretical results.

It is here that interactions between theory and empirics become important to select (no pun

intended) the ‘correct’ models.

4.1 Sorting

We first analyze sorting and show that it is closely related to selection in general equilibrium.

This will serve as a basis for the analysis of selection in the next subsection.

4.1.1 A simple model

We develop a simple reduced-form extension of the canonical model by Henderson (1974)

in which individuals are endowed with heterogeneous ability. Within that model, we then

derive: (i) a spatial equilibrium with sorting; (ii) limiting results when the size elasticity of

agglomeration economies, ǫ, and the size elasticity of urban costs, γ, are small, as vindicated

by the data; and (iii) limiting results on the city size distribution when γ/ǫ is close to one. We

then show how our model encompasses or relates to recent models in the literature that have

investigated either the sorting of workers (Behrens, Duranton, and Robert-Nicoud, 2014; Davis

and Dingel, 2012; Eeckhout, Pinheiro, and Schmidheiny, 2014) or the sorting of firms (Baldwin

and Okubo, 2006; Forslid and Okubo, 2014; Gaubert, 2014; Nocke, 2006) across locations.

Let t ∈ [t, t] denote some individual characteristic that is distributed with pdf f(·) and cdf

F (·) in the population. For short, we refer to t as ‘talent’. More able workers have higher

values of t. As in the canonical urban model, workers are free to move to the city of their

choice. We assume that total population is fixed at L. The number C of cities, as well as

their sizes Lc, are as before endogenously determined by workers’ location choices. Yet, the

talent composition of each city is now endogeneous and determined by the location choices of

heterogeneous individuals. Each worker chooses one city in equilibrium, so that L = ∑c Lc.
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We assume that a worker with talent t supplies ta efficiency units of labor, with a > 0.

Labor in city c is used to produce a freely traded homogeneous final consumption good under

the constant returns to scale technology (2). We abstract from site heterogeneity by letting

Ac = A for all c. Hence, wc = ALc is the wage per efficiency unit of labor. Assuming

that agglomeration economies solely depend on city size and are given by Lc ≡ Lǫ
c, and that

preferences are linear, the utility of a type-t agent in city c is given by

uc(t) = ALǫ
ct
a − Lγ

c . (26)

Note the complementarity between talent and agglomeration economies in (26): a larger city

size Lc disproportionately benefits the most talented agents. This is the basic force pushing

towards the sorting of more talented agents into larger cities, and it constitutes the ‘micro-level

equivalent’ of (25) in the previous section. Observe that there are no direct interactions between

the talents of agents: the sorting of one type into a location does not depend on the other types

present in that location. This assumption, used for example in Gaubert (2014) in the context of

the spatial sorting of firms, is restrictive yet simplifies the analysis greatly.37 When the payoff

to locating in a city depends on the composition of that city – which is itself based on the choices

of all other agents – things become more complicated. We return to this point in Section 4.1.6.

Using (26), it is readily verified that the single-crossing property

∂2uc

∂t∂Lc
(t) > 0 (27)

holds. Hence, utility is supermodular in talent and city size, which implies that there will be

positive assortative matching (henceforth, pam) in equilibrium (Sattinger, 1993). In a nutshell,

agents will sort themselves across cities according to their talent. As can be anticipated from

(26) and (27), not all types of agents will choose the same city in equilibrium. The reason is that

urban costs are not type specific, unlike urban premia. Hence, only the more talented agents

are able to pay the higher urban costs of larger cities because they earn more, whereas the less

talented agents choose to live in smaller cities where urban costs are also lower.38

37Gaubert (2014) uses a setting similar to ours yet focuses on the sorting of heterogeneous firms. In her model,
trade is costless which implies that the spatial distribution of firms across cities has no impact on the industry
price index. Thus, the location choices of firms are driven by city sizes, but not by the composition of cities in
terms of the productivity of the firms they host or the overall spatial distribution of the industry.

38Positive assortative matching need not hold in sorting models, especially in general equilibrium. For example,
in Mori and Turrini (2005), who build on Krugman (1991), more skilled agents are less sentitive to market size
because they can more easily absorb the extra costs incurred for trading their good across regions. When trade
costs are high enough, this effect may imply that there is a (rather counterfactual) negative relationship between
market size and sorting along skills: the more skilled may actually concentrate in the smaller region. Wrede
(2013) extends Mori and Turrini (2005) to include housing à la Helpman (1998) and by dropping communication
costs. His model is then close to ours and predicts that there is sorting along talent across regions, with the more
talented region being larger and commanding higher wages and housing prices. Venables (2011) develops a model
of imperfect information in which the most talented workers signal their ability by living in large, expensive cities.
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4.1.2 Spatial equilibrium with a discrete set of cities

Let C = {1, 2, . . . ,C} be an exogenously determined set of cities. Because of pam in (27), we

know that agents of similar talent will end up locating in similar cities. Hence, we can look at

equilibria that induce a partition of talent across cities. Denote by tc the talent thresholds that

pin down the marginal agent who is indifferent between two consecutive cities c and c+ 1. By

definition of those thresholds, it must be that

ALǫ
ct
a
c − Lγ

c = ALǫ
c+1t

a
c − L

γ
c+1, so that tac =

1

A

1 −
(

Lc
Lc+1

)γ

1 −
(

Lc
Lc+1

)ǫ Lγ−ǫ
c+1 . (28)

As in the canonical model of Section 3.2, expressions (28) only provide bounds on the dis-

tribution of talent and the corresponding city sizes that can be sustained as equilibria. Any

equilibrium must exhibit a partition of talent and a monotonic increase in city sizes associated

with higher talent because of pam. Without any coordinating device like local developers or

local governments, a large number of equilibria can be potentially sustained under sorting.

For expositional purposes, let us assume ǫ, γ → 0 and γ/ǫ → 1. In words, we assume

that the size elasticity of agglomeration economies, ǫ, and the size-elasticity of urban costs,

γ, are both ‘small’ and of similar magnitude. Although it is debatable what ‘small’ means

in numerical terms, the empirical partial correlations of ǫ̂ = 0.081 and γ̂ = 0.088 in our data

(see Section 2) imply that γ̂/ǫ̂ = 1.068 is close to one and that the gap γ̂ − ǫ̂ = 0.007 is small

and statistically indistinguishable from zero. Recent estimates of γ and ǫ using microdata and

a proper identification strategy find even smaller values and a tiny gap γ − ǫ between them

(Combes, Duranton, and Gobillon, 2008, 2014). Using the foregoing limit for the ratio in the

left-hand side of (28), the relationship (28) can be rewritten as follows:

tac ≈
1

A
L
γ−ǫ
c+1 lim

ǫ,γ→0

1 −
(

Lc
Lc+1

)γ

1 −
(

Lc
Lc+1

)ǫ =
1

A

γ

ǫ
L
γ−ǫ
c+1 . (29)

Taking ratios, condition (29) can be expressed in c and c− 1 as follows:

(
tc

tc−1

)a

=

(
Lc+1

Lc

)γ−ǫ

⇒ Lc+1 = Lc

(
tc

tc−1

)γ−ǫ

> Lc, (30)

where the last inequality comes from γ > ǫ and tc > tc−1. Under our approximation, city size

can be directly expressed as a function of the talent of its least talented resident:

Lc = L(tc) =

(
ǫ

γ
Atac

) 1
γ−ǫ

. (31)
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Clearly, equilibrium city sizes are increasing in the talent threshold: more talented cities, with

a larger tc, are bigger in equilibrium.39 Recalling that available estimates of γ − ǫ are a fraction

of a percentage point, the elasticity 1/(γ − ǫ) in the expression above is extremely large: small

cross-city differences in talent translate into huge differences in city sizes. More talented cities

have also a higher average productivity. Let

tc ≡
[∫ tc+1

tc

tadFc(t)

] 1
a

(32)

denote the city’s average talent, where Fc(·) is the city-specific talent distribution. We then have

yc = AcL
ǫ
c, where Ac ≡ At

a
c is the city-specific tfp term that depends on site characteristics A

– common to all sites in the simple model – and the sites’ endogeneously determined compo-

sition in terms of human capital, tc. Hence, productivity gains depend both on agglomeration

economies in a classical sense (via Lǫ
c) and via a human capital composition effect (via t

a
c ). The

latter accounts for about 40-50% of the observed differences in wages between cities of different

sizes (Combes, Duranton, and Gobillon, 2008).

Turning to utility, from (26) we have

uc(t) =

(
ǫ

γ
Atac

) γ
γ−ǫ
[
γ

ǫ

(
t

tc

)a

− 1

]
, so that uc = yc − Lγ

c =

(
ǫ

γ
Atac

) γ
γ−ǫ
[
γ

ǫ

(
tc

tc

)a

− 1

]
.

The first expression is increasing in own talent and ambiguous in the city’s minimum talent tc.

On the one hand, a more talented city means more effective units of labor and thus higher

productivity ceteris paribus, and this benefits all urban dwellers and especially the more

talented; see Moretti (2004) for a comprehensive review of the literature on human capital

externalities in cities. On the other hand, talented cities are bigger by (31) and congestion

costs larger, which hurts all urban dwellers equally. The second expression reveals that in the

limiting case where tc/tc is approximately constant across cities (as in Behrens, Duranton, and

Robert-Nicoud, 2014), average utility is convex in tc: more talented agents are able to leverage

their talent by forming larger cities.

We have thus established the following result:

Proposition 4 (Sorting and city size) In the simple sorting model, equilibrium city size, Lc, and per

capita output, yc, are increasing functions of the average talent, tc, of the agents located in the city. The

equilibrium utility of an agent t located in city c is increasing in own talent t and ambiguous in tc.

Figure 9 illustrates the sorting of agents across three cities. Agents with the lowest talent

pick cities of type 1, which are small. Agents with intermediate talent pick cities of type 2,

39This holds for any partition of talents across cities. Even when there are multiple equilibria, every equilibrium
is such that an upwards shift of any threshold is accompanied by an increase in city sizes. Clearly, (31) depends
strongly on the limits. Yet, when the city size distribution has a sufficiently fat upper tail, Lc/Lc+1 gets rapidly

small and thus (28) implies that tac ≈ L
γ−ǫ
c+1 /A. The qualitative implications of (31) then approximately carry over

to that case.
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which are larger. Last, agents with the highest talent pick cities of type 3, which are larger still.

As shown before, the equilibrium relationship between talent and utility – and between talent

and city size – is convex. More talented agents gain the most from being in large cities, and

large cities must be ‘sufficiently larger’ to discourage less talented agents to go there.

Three remarks are in order. First, the least talented agent pins down the city size that makes

him indifferent. Any increase in the size of his city would lead him to deviate to a smaller city

in order to save on urban costs. In each city, more talented individuals naturally receive higher

utility. Second, and as a direct consequence of the previous point, the standard condition for

a spatial equilibrium in the absence of mobility frictions – namely the equalization of utility

across all locations – breaks down since no type is generically represented in all cities. Except for

the marginal types who are indifferent between exactly two cities, all agents are strictly better

off in the city of their choice.40 In words, the ubiquitious condition of equal utility across all

populated places naturally ceases to hold in a world where agents differ by type and where

different types opt for different locations. The formulation of the spatial equilibrium in (6)

– “the field’s central theoretical tool” (Glaeser and Gottlieb, 2009, p.984) – must be modified.

This has fundamental theoretical and empirical implications.41 Last, the positive correlation

between ‘talent’ and city size is strongly borne out in the data, as can be seen from the left

panel of Figure 3 in Section 2. Sorting matters!

40Much of the literature has recently moved away from the idea of a simple spatial equilibrium without frictions
or heterogeneity and with equalization of utilities across locations. Behrens, Mion, Murata, and Südekum (2012),
Diamond (2013), Gaubert (2013), and Kline and Moretti (2014) all relax this condition by introducing either
mobility frictions explicitly or by assuming that agents have locational taste differences. The latter has been
previously applied to neg models by, e.g., Murata (2003) and Tabuchi and Thisse (2002), in order to obtain
equilibria that vary smoothly with the parameters of the models.

41For instance, regressing individual earnings on a measure of citywide average human capital leads to biased
results in the presence of self-selection of agents across locations (this bias is positive if agents with similar abilities
make similar choices because the error term is positively correlated with t̄a).
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Figure 9: Sorting of heterogeneous agents across three cities.
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In the foregoing, we have looked at ‘discrete cities’, i.e., cities that span some talent range

[tc, tc+1]. Discrete cities induce a discrete partition of the talent space. Though empirically

relevant because cities host agents of multiple talents, the downside is that the model is

quite hard to work with since there is a continuum of equilibria. To solve the model implies

specifying a partition, solving for relative city sizes, and choosing a scale for absolute city

sizes (by specifying the outside option). Depending on the choice of partition and scale, a

multitude of equilibria may be sustained. Part of the problem comes from the fact that we

assign a predetermined city structure to agents and then check the equilibrium conditions.

Alternatively, we may consider a setting without any predetermined structure in which agents

can form any type of cities in terms of size and composition.

4.1.3 Spatial equilibrium with a continuum of cities

Assume next that agents can choose cities optimally in the sense that they decide – conditional

on their talent – which city size they prefer to live in. Formally, an agent with talent tmaximizes

her utility with respect to city size, i.e., she picks one city size from the menu of all possible city

sizes. Here, we assume that the set of cities C = [0,C] is a continuum. All cities can potentially

be formed and the mass (number) of cities C is an endogenous variable. This is essentially the

model developed by Behrens, Duranton, and Robert-Nicoud (2014). The first-order condition
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of that problem is given by:42

max
Lc

uc(t) ⇒ AǫLǫ−1
c ta − γLγ−1

c = 0, (33)

which yields the preferred city size of agents with talent t

Lc(t) =

(
ǫ

γ
Ata

) 1
γ−ǫ

. (34)

It is easily verified that the second-order condition holds at the equilibrium city sizes.

Five comments are in order. First, comparing equations (31) and (34) reveals that they have

the same structure. The difference is that (31) applies to the marginal agent, whereas (34)

applies to any agent. The equilibrium with a large number of discrete cities approaches the

one where agents can sort across a continuum of cities. The intuition is that in the continuous

model, all agents are almost indifferent between cities of similar sizes. Yet, every agent has her

own prefered size, depending on her talent.

Second, (34) gives a relationship that uniquely maps talents into city size: two different

agents would optimally choose to not live in a city of same size. This significantly narrows

down the composition of cities in terms of talents: cities are talent-homogeneous, and pam

implies that more talented agents choose to live in larger cities. We trace out the implications

of this for the city size distribution in the next subsection.Since every agent picks her prefered

city, this is a stable equilibrium in the sense that no one can profitably deviate. There are

potentially many equilibria with a partition of talent across cities (see the discrete setting in the

previous subsection), but in that case not all agents live in a city of the size they would prefer

had they the choice of city size. How such an equilibrium, where agents can form the number

of cities they wish and each agent chooses to live in a city with her preferred size, is actually

implemented in the static model is an open question.

Third, having talent heterogeneity and a continuum of cities convexifies the problem of allo-

cating agents to cities. We can think about this convexification as follows. In the discrete case,

the utility of type-t in city c is uc(t) = ALǫ
c(t

a − tac ǫ/γ), which is a linear function of ta (recall

that Lc depends only on the marginal type tc). A change in Lc in city c will change the talent

composition of that city (see Figure 9), yet can be sustained as an equilibrium if the change in

Lc is not too large: city sizes are not uniquely determined. In the continuous case, the utility of

type-t in a city of optimal size is uc(t) = ALǫ
ct
a(1 − ǫ/γ) = (ǫ/γ)ǫ/(γ−ǫ)(Ata)γ/(γ−ǫ)(1 − ǫ/γ),

which is a strictly convex function of ta. The convexification stems from the fact that an

42It is here that the assumption that the city composition does not matter becomes important. In general, the
problem of an agent would involve two dimensions: the choice of a city size, and the choice of a city composition.
The latter makes matters complicated. Behrens, Duranton, and Robert-Nicoud (2014) simplify the problem by
focusing on ‘talent homogeneous’ cities, i.e., cities which host only one type of talent. In that case, solving for
Lc(t) involves solving a differential equation. In our simple model, the talent composition does not matter, so
size is the only choice variable and cities will trivially be ‘talent homogeneous’, as shown by (34).
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increase in talent raises utility by more than linearly as city size changes with the talent of

its representative urban dweller. Contrary to the discrete case, the size-talent relationship is

uniquely determined. Intuitively, a city cannot grow larger or smaller than (34) because of the

existence of arbitrarily similar cities in terms of size and talent to which agents could deviate

to get higher utility.

Fourth, per capita output in a type-t city is given by yc = ALǫ
ct
a. Taking logarithms, this

becomes either

ln yc = κ1 + ǫ lnLc + a ln tc (35)

or

ln yc = κ2 + γ lnLc, (36)

where (36) is obtained by making use of (34). Hence, a log-log regression of productivity

yc on size Lc yields either the elasticity of agglomeration economies in (35), where sorting is

controlled for, or the elasticity of urban costs in (36) where sorting is not controlled for.

Last, taking logarithms of (34), we obtain ln tc = κ+ γ−ǫ
a lnLc, where κ is some constant

term. When γ − ǫ is small, the elasticity of talent with respect to city size is small: the size

elasticity of ‘education’ with respect to city size is 0.117 in our us data (see the left panel of

Figure 3). The fact that large cities are only mildly more ‘talented’ – as measured by educational

attainment of the city population – is the mirror image of the property that small differences

in education have to be offset by large differences in city sizes. Thus, a small elasticity of talent

with respect to city size is in no way indicative that sorting is unimportant, as some authors

have sometimes been led to argue.

4.1.4 Implications for city sizes

As shown before, the sorting of heterogeneous individuals across cities gives rise to cities of

different equilibrium sizes. What does the theory imply for the size distribution of cities? We

now use the model with a continuum of cities to show that the implications for that distribution

are striking. Observe first that the ‘number’ of agents of talent t in the population is given by

Lf(t). As shown before, agents of talent t prefer cities of size L(t) as given by (34). Assume

that n(t) of such cities form. Since all agents choose a city in equilibrium, it must be the case

that Lf(t) = n(t)L(t) or, equivalently,

n(t) =
Lf(t)

L(t)
. (37)

Let C denote the total mass of cities in the economy. The cumulative distribution N(·) of cities

is then given by

N(τ) =
L

C

∫ τ

0

f(t)

L(t)
dt.
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Using the relationship between talent and size (34), we have

f(t)

L(t)
=
f
(
ξL(t)

γ−ǫ
a

)

L(t)
and dL =

a

ξ(γ − ǫ)
L(t)1− γ−ǫ

a dt,

where ξ ≡
(

ǫ
γ

A
)− 1

a
is a positive bundle of parameters. Using the distribution of talent and

the change in variable from talent to city size, the density and the cumulative distribution of

city sizes are given by

n(L) =
Lηξ

C
f (ξLη)Lη−2 and N(L) =

Lηξ

C

∫ ℓ

0
f (ξℓη) ℓη−2dℓ, (38)

with η ≡ γ−ǫ
a . The first-order approximation of (38) around η = 0 is given by

n(L) = κL−2 (39)

where κ ≡ Lηξ
C
f(ξ) > 0 is a positive constant (recall that η remains positive). Using this expres-

sion and the full-employment condition, L =
∫ L(t)
L(t)

n(L)LdL, and solving for the equilibrium

mass of cities yields

C = ηξf(ξ)[lnL(t)− lnL(t)]L,

that is, the number of cities is proportional to the size of the population. The urban system

displays constant returns to scale in equilibrium. Thus, by inspection of equation (39), we can

show (Behrens, Duranton, and Robert-Nicoud, 2014):

Proposition 5 (Zipf’s law) Assume that agents sort across cities according to (34). Then the size

distribution of cities follows a Pareto distribution with shape parameter −1 in the limit η ≡ γ−ǫ
a → 0.

The right panel of Figure 6 illustrates that relationship. That Zipf’s law holds in this

model is remarkable because it does not depend on the underlying distribution of talent in the

population. In other words, when γ − ǫ is small – as seems to be the case in the data – the

city size distribution in the model converges to Zipf’s law irrespective of the underlying

talent distribution.43 What is crucial for obtaining this result are two relatively reasonable

requirements. First, the ‘number’ of cities – more precisely the mass of cities – associated

with each level of talent is endogenously determined. Second, city sizes are also endogenously

determined and agents can sort themselves across cities of their preferred type. Since agents

of any type t have a preferred city size that is a continuous function of their talent, taking that

talent to a sufficiently large power implies that the resulting city size distribution is Zipf.

43Behrens, Duranton, and Robert-Nicoud (2014) show that convergence to Zipf’s law is very fast as η gets
smaller. For empirically plausible values of η, the simulated city size distribution is indistinguishable from a
Pareto distribution with unitary shape parameter.
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Random growth models also (approximately) generate Zipf’s law in steady state if Gibrat’s

law holds. The latter has been challenged lately on empricial grounds (see Michaels, Redding,

and Rauch, 2012). Desmet and Rappaport (2014) show that Gibrat’s law appears to settle once

the distribution is Zipf (and not the other way round). The model of this subsection displays

one possible mechanism to generate Zipf, like the models in Hsu (2012) and Lee and Li (2013).44

One distinct advantage of our model is that it generates Zipf’s law for plausible values of the

parameters irrespective of the underlying distribution of talent (which we don’t observe).

4.1.5 Some limitations and extensions

The model developed in Section 4.1.1 has the virtue of simplicity. The flip side is that it

naturally has a number of shortcomings. Firstly, like almost any model in the literature (e.g.,

Mori and Turrini, 2005; Nocke, 2006; Baldwin and Okubo, 2006; Okubo, Picard, and Thisse,

2010), it predicts strict sorting along a single dimension. Yet, it is well known that there is a

significant overlap of productivities in cities. Larger cities host, on average, more able agents,

yet there is nothing close to a clear partition along firm productivity and individual education

across cities in the data (Combes, Duranton, Gobillon, Puga, and Roux, 2012; Eeckhout,

Pinheiro, Schmidheiny, 2014; Forslid and Okubo, 2014). For example, although the correlation

between the share of highly skilled workers and city size in the us is statistically very significant

(see the left panel of Figure 3), the associated R2 in the log-log regression is only 0.161.45

Our simple model with a continuum of cities can easily be extended in the spirit of Behrens,

Duranton, and Robert-Nicoud (2014) to allow for incomplete sorting along productivity. The

idea is to have a two-stage process, where agents sort on an ex ante signal (their talent), but

where ex post productivity is uncertain. Assume that after choosing a city c, each agent gets

hit by a random productivity shock s ∈ [0, sc], with cdf Gc(·). We can think about s as being

luck or ‘serendipity’ – the agent is at the right time in the right place. The efficiency units of

labor she can supply depend on her talent t and the shock s in a multiplicative way: ϕ ≡ s× t.

Denote by Φc(·) the distribution of productivity in city c. Clearly, even two cities with similar yet

different talent compositions will end up having largely overlapping productivity distributions.

We then have the following expected wage in city c with average talent tc defined in (32):

Ewc(t) = ALǫ
c

∫ t
a
csc

0
ϕadΦc(ϕ) = A

(∫ sc

0
sadGc(s)

)
t
a
c

︸ ︷︷ ︸
=Ac(A,tc,Gc(·))

Lǫ
c.

Clearly, the tfp term Ac is city-specific and a function of sorting and of a city-specific distri-

bution of shocks, and there is a non-degenerate distribution of wages and productivities in

44Hsu (2012) also generates Zipf’s law using a static framework. The mechanism, based on central place theory
and fixed costs, is however very different from the other two models reviewed here.

45Sorting by skills in the us has increased between 1980 to 2000. Diamond (2013) studies its consequences for
welfare inequality.
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all cities. The distribution of productivity of cities endowed with highly talented individuals

stochastically dominates the distribution of less talented cities.46

Another way to generate incomplete sorting is to assume that agents choose locations based

on a random component in their objective function, as in Behrens, Mion, Murata, and Südekum

(2012) or Gaubert (2014). The idea is that the location choices of consumers and firms have a

deterministic component (profit or indirect utility) as well as a probabilistic component. Under

standard assumptions on the distribution of the probabilistic component – if it follows a type-I

extreme value distribution – location choice probabilities are then of the logit form and allow for

incomplete sorting across locations: observationally identical agents need not make the same

location decisions. More talented agents will, on average, pick larger cities, but the distribution

of types is fuzzy across cities. The same result can be achieved by including a deterministic

type-independent ‘attachment to home’ component as in Wrede (2013).

Finally, the foregoing models predict pam: larger cities host, on average, more talented

individuals, and the productivity distribution in larger cities first-order stochastically domi-

nates that in smaller cities. However, some recent empirical evidence documents that both the

right and the left tails for the productivity distributions of French workers (Combes, Duranton,

Gobillon, and Roux, 2012), us workers (Eeckhout, Pinheiro, and Schmidheiny, 2014), and

Japanese firms (Forslid and Okubo, 2014) are fatter in larger cities. In other words, larger

markets seem to attract both the most and the least productive workers and firms. Large

cities are thus more unequal since they host a disproportionate share of both highly productive

and poorly productive agents. While the empirical evidence on two-way sorting is certainly

intriguing and points to the existence of some non-trivial complementarities, existing models of

two-way sorting still fall short of providing either theoretically plausible or empirically testable

mechanisms.47 The over-representation of the left tail of skills in larger cities could be due to

many things including more generous welfare policies, complementarities between skilled and

unskilled workers (e.g., rich households employing unskilled workers for housekeeping and

childcare activities) greater availability of public housing, effects of migrants, or the presence

of public transportation as pointed out by Glaeser, Kahn, and Rappaport (2008). As we argue

in the next section, complex general equilibrium effects in the presence of selection effects

cab generate supermodularity for the upper tail submodularity for the lower tail of the skill

distribution. While the jury is not yet in as to what may drive two-way sorting, we believe that

more work is needed in that direction.

46It may be reasonable to assume that the shocks may be on average better in larger cities as the result of various
insurance mechanism, better opportunities, etc. This is an additional force pushing towards sorting through the
tfp terms: more talented agents will go to places with better shocks since they stand to gain more from good
shocks and to lose less from bad shocks.

47Whether or not the patterns in the data are due to ‘two-way sorting’ or ‘sorting and selection’ is a priori
unclear, as we will emphasize in the next section. There may be one-way sorting – larger markets attract more
able agents – but selection afterwards fails a certain share of them. Those agents end up as low productivity ones,
a pattern that we see in the data.
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4.1.6 Sorting when distributions matter (a prelude to selection)

In the simple model of Section 4.1.1, individuals make location choices looking at the sizes

and average talent of cities only: a more talented city is a city endowed with more efficiency

units of labor per capita. Per se, there are no benefits or drawbacks associated with living in

a talented city. Yet, there are a number of reasons to believe that the talent composition of a

city directly matters for these choices in more subtle ways. On the one hand, locating in a

city with more talented entrepreneurs may provide a number of upsides like access to cheaper

intermediates or higher wages for workers. It may also allow for more productive interactions

among workers who learn from each other, especially when the quality of learning depends

on the talent of the other agents (Davis and Dingel, 2012). Locating in a place with many

talented people may, on the other hand, also have its downsides. Most notably, it toughens

up competition since any agent has to compete against more numerous and more talented

rivals. Whatever the net effect of the pros and cons, it should be clear that, in general, the

location decision of any agent is at least partly based on where other agents go, i.e., sorting is

endogenous to the whole distribution of talent across cities.

Sorting when the whole distribution of talent matters is formalized in both Behrens, Du-

ranton, and Robert-Nicoud (2014), and Davis and Dingel (2012). Behrens, Duranton, and

Robert-Nicoud (2014) consider that agents sort across cities based on their talent. As in

Section 4.1.5, productivity ϕ is the product of ‘talent’ and ‘luck’. Agents who are productive

enough – their productivity exceeds some endogenous city-specific selection cutoff ϕ
c

– become

entrepreneurs and produce local intermediates that are assembled at the city level by some

competitive final sector using a ces aggregator. They earn profits πc(ϕ). The remaining agents

become workers and supply ϕa units of efficient labor, as in our simple model, and earn

wcϕ
a ≤ πc(ϕ). In that context, wages and per capita output in city c are respectively given by

wc =
1

1 + ǫ

[∫ ∞

ϕ
c

ϕ
1
ǫ dΦc(ϕ)

]ǫ
Lǫ
c and yc =

[∫ ∞

ϕ
c

ϕ
1
ǫ dΦc(ϕ)

]ǫ [∫ ϕ
c

0
ϕadΦc(ϕ)

]

︸ ︷︷ ︸
=Ac(ϕc

,Φc)

Lǫ
c, (40)

where Φc(·) is the city-specific productivity distribution. Observe that the tfp term Ac is

endogenous and depends on sorting (via the productivity distribution Φc) and selection (via the

cutoff ϕ
c
). The same holds true for wages. This affects the location decisions of heterogeneous

agents in non-trivial ways. In their model, the random shocks s occur after a city has been

chosen. Individuals’ location decisions are thus based on the expected utility that an agent

with talent t obtains in all cities. For some arbitrary city c, this expected utility is equal to:

Euc(t) =
∫ sc

0
max{πc(st),wc(st)

a}dGc(s)− Lγ
c .

It should be clear from the foregoing expression that a simple single-crossing property
∂2Euc
∂t∂Lc

(t) > 0 need not generally hold. The reason is that both the selection cutoff ϕ
c

and
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the whole productivity distribution Φc(·) depend on the city size Lc in general equilibrium.

As shown in Section 4.2 below, it is generally not possible to assess whether larger markets

have tougher selection (∂ϕ
c
/∂Lc > 0) or not. Thus, it is also a priori not possible to make clear

statements about sorting: pam does not hold in general.

Another way in which the talent composition of a city may matter for sorting is when there

are learning externalities. Consider the following simplified variant of the model by Davis

and Dingel (2012). There are two types of workers. The first type produces non-tradable

goods under constant returns to scale and no externalities. The second type produces some

costlessly traded good. Productivity in that sector is subject to learning externalities. Each

worker has t units of efficient labor, which can be used for either work, or for learning from

others. In equilibrium, workers with t ≥ tc engage in the production of traded goods in city c,

whereas the others produce non-traded goods. In other words, the model features occupational

selection. Let β ∈ (0,1) denote the share of time a worker devotes to learning (this is a choice

variable). The output of a type-t worker in city c employed in the traded sector is given by:48

yc(t) = (βt)αc [(1 − β)tLc]
1−αc , (41)

where the first part is the output from allocating time to work, and where the second part is

the productivity-enhancing effect of learning. Here, αc ∈ (1/3, 1/2) is a city-specific parameter

that subsumes how important learning is for an agent’s productivity. Expression (41) already

reveals the basic force pushing towards ability sorting: more talented agents benefit more from

larger learning externalities.

Maximizing (41) with respect to β yields β∗ = αc
1−2αc

, which is increasing in αc and inde-

pendend of talent.49 The learning externality, Lc, depends on the time that all agents in the

city allocate to that activity (a scale effect), and to the average talent of agents in the city (a

composition effect). Let us assume that

Lc = Iǫc · tc, where Ic = Lc

∫

t≥tc

(1 − βc)dFc(t) and tc =
1

1 − Fc(tc)]

∫

t≥tc

tdFc(t) (42)

are the scale and the composition effects, respectively. The former effect can be computed as

Ic = Lc
1−3αc
1−2αc

[1 − Fc(tc)] and implies that there is greater potential for spillovers when more

agents engage in learning. The second effect implies that the quality of learning is increasing

in the average talent of those who are engaged in learning. Both depend on the selection of

agents, as captured by the selection threshold tc.

48This specification rules out the ‘no learning’ equilibria that arise in Davis and Dingel (2012). Those equilibria
are of no special interest.

49Although it may seem reasonable to consider that more talented workers stand more to gain from learning as
in Davis and Dingel (2012) and should thus choose higher βs in equilibrium, our assumption simplifies the model
while still conveying its key insights.
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Substituting β∗ and expressions (42) into (41), we obtain the average productivity in city c:

yc = κct
2−αc
c [1 − Fc(tc)]

ǫ(1−αc)+1

︸ ︷︷ ︸
=Ac(tc,Fc)

L
ǫ(1−αc)
c , (43)

where κc is a term that depends on αc, β, and ǫ. The tfp term Ac again depends on the

endogenous allocation of talents across cities, Fc(·) and selection into occupations within cities

(as captured by tc). In general, the threshold is itself a function of city size and the distribution

of talent across cities. In a nutshell, tc, Fc(·) and Lc are simultaneously determined at the city

level, and the locational equilibrium condition, whereby each agent picks her prefered location,

must hold. Note the similarity between (40) and (43). Both models predict that sorting and

selection interact to determine the productivity advantage of cities. We return to this point

below.

Although the sorting of workers across cities has attracted the most attention, a growing

literature looks at the sorting of firms (see, e.g., Baldwin and Okubo, 2006; Forslid and Okubo,

2014; Nocke, 2006; Okubo, Picard, and Thisse, 2010). In a sub-national context, we can think

about the sorting of firms in the same way as about the sorting of entrepreneurs since it is fair

to say that most firms move with the people running them.50 Gaubert (2014) assumes that a

firm’s realized productivity is given by ψ(t,Lc), where t is the firm’s intrinsic productivity. The

latter interacts, via ψ, with agglomeration economies as proxied by city size Lc. Using a simple

single-sector variant of her multi-industry ces model, the profit of a firm with productivity t is

given by

πc(t) = AcP
σ−1
c

[
ψ(t,Lc)

wc

]σ−1

, (44)

where Ac is a city-specific tfp shifter, Pc is the city-specific ces price aggregator, wc is the

city-specific wage, and σ > 1 is the demand elasticity. As can be seen from (44), the firm-level

productivity t interacts with city size Lc both directly, via the reduced-form function ψ, and

indirectly via the city-wide variables Ac, Pc, and wc. Taking logs of (44) and differentiating, and

noting that none of the city-wide variables Ac, Pc, and wc depend on a firm’s individual t, we

see that the profit function is log-supermodular in t and Lc if and only if ψ is log-supermodular:

∂2 ln πc(t)

∂Lc∂t
> 0 ⇔ ∂2 lnψ(t,Lc)

∂Lc∂t
> 0.

In words, the profit function inherits the log-supermodularity of the reduced-form productivity

function ψ, which then implies that more productive firms sort into larger cities.

50Empricial evidence suggests that the bulk of the spatial differences in wages is due to the sorting of workers
(Combes, Duranton, and Gobillon, 2008), with only a minor role for the sorting of firms by size and productivity
(Mion and Naticchioni, 2009). Furthermore, it is difficult to talk about the sorting of firms since, e.g., less than
5% of firms relocate in France over a 4 year period (Duranton and Puga, 2001). Figures for other countries are
fairly similar, and most moves are short distance moves within the same metro area. Entry and exit dynamics
thus drive observed patterns, and those are largely due to selection effects.
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Four comments are in order. First, this sorting result generically holds only if profits are

log-linear functions of city-wide aggregates and ψ. The latter is the case with ces preferences.

Relaxing ces preferences implies that individual profit is generically not multiplicatively sepa-

rable in ψ and Lc; in that case, log-supermodularity of ψ is neither necessary nor sufficient to

generate log-supermodularity of π. Second, log-linearity of profits implies that only the direct

interactions between t and Lc matter for the sorting of firms. Relaxing the (relatively strong)

assumption of log-supermodularity of ψ, the model by Gaubert (2014) would also be a model of

sorting where the (endogenous) productivity distribution of cities influences location choices

in a non-trivial way. As such, it would be extremely hard to solve as we argue in the next

subsection. Third, with proper microeconomic foundations for sorting and selection (more on

this below), it is not clear at all that ψ be log-supermodular in t and Lc in equilibrium. Last,

in general equilibrium, the indirect interactions of city size via Pc and wc with the individual

t may suffice to induce sorting. For example, in the model with an inelastic housing stock

as in Helpman (1998), w(Lc) is an increasing function of Lc to compensate mobile workers

for higher housing costs. This has opposite effects on profits (higher costs reduce profits, but

there are city-wide income effects) which may make larger cities more profitable for more

productive agents and thereby induce sorting. How these general equilibrium effects influence

occupational choice and interact with sorting is the focus of the next subsection.

4.2 Selection

We now touch upon an issue that has rightly started attracting attention in recent years:

selection. Before proceeding, it is useful to clarify terminology. We can think of two types

of selection: survival selection, and occupational selection. Survival selection refers to a stochastic

selection of the Hopenhayn-Melitz type where entrants have to pay some sunk entry cost, then

discover their productivity, and finally decide whether or not to stay in the market (Hopenhayn,

1992; Melitz, 2003; Melitz and Ottaviano, 2008; Zhelobodko, Kokovin, Parenti, and Thisse,

2012). Occupational selection refers to a deterministic selection where agents decide whether

to run firms or to be workers, depending on their talent (Lucas, 1978).51 For simplicity, we

only deal with occupational selection in what follows.52 The selection cutoff tc for talent in

city c then determines how agents are split among different occupational groups (firms or

entrepreneurs vs workers).

Our aim is not to provide a full-fledged model of selection, but rather to distill some key

insights. Our emphasis is on the interactions between selection, sorting, and agglomeration.

51In a spatial context, the former has been investigated by Ottaviano (2012), Behrens, Mion, Murata, and
Südekum (2014), and Behrens and Robert-Nicoud (2014b). The latter has been analyzed by Davis and Dingel
(2012), Behrens, Duranton, and Robert-Nicoud (2014), and Behrens, Pokrovsky, and Zhelobodko (2014).

52See Melitz and Redding (2014) for a recent review of survival selection in international trade. Mrázová and
Neary (2012) provide additional details on selection effects in models with heterogeneous firms.

49



We show in this section that selection and sorting are causally linked, observationally equiv-

alent and, therefore, empirically very difficult to disentangle (Combes, Duranton, Gobillon,

Puga, and Roux, 2012). We also show that the impact of market size on selection is generally

ambiguous in economic models, i.e., it is unclear whether larger markets have more or fewer

firms (entrepreneurs) and whether market size is associated with a pro-competitive effect. This

result is largely due to the general equilibrium interactions between selection, sorting, and

agglomeration.

4.2.1 A simple model

While sorting can be studied under fairly general assumptions, studying selection requires

imposing more structure on the model. More precisely, we need a model in which the

relative position of an agent – as compared to the others in the market – matters. Models of

imperfect competition with heterogeneous agents usually satisfy that requirement. Selection

can thus be conveniently studied in general equilibrium models of monopolistic competition

with heterogeneity, where the payoff to one agent depends on various characteristics such as

market size, the skill composition of the market, and the number of competitors. Developing

a full model is beyond the scope of this chapter, but a simple reduced-form version will allow

us to highlight the key issues at hand.

Consider a set of heterogeneous producers (entrepreneurs) who produce differentiated

varieties of some non-traded consumption good or service in city c. We denote by Fc(·) the

cumulative distribution of talent in city c, with support [tc, tc]. To make our point clearly, we

take that distribution, and especially tc, as given here, i.e., we abstract from sorting across cities.

We discuss the difficulties of allowing for an endogenous talent distribution Fc(·), as well as

the interaction of that distribution with selection, later in this section.

Workers earn wc per efficiency unit of labor, and workers with talent t supply ta efficiency

units. We assume that entrepreneurial productivity is increasing in talent. We further assume

that talented individuals have a comparative advantage in becoming entrepreneurs (this re-

quires entrepreneurial earning to increase with t at a rate higher than a), so that the more

talented agents (with t > tc) operate firms as entrepreneurs in equilibrium. We refer to tc as

the occupational selection cutoff (or cutoff, for short). An entrepreneur with talent t hires 1/t

efficiency units of labor to produce a unit of output. Entrepreneurs maximizes profits, which

we assume are given by:

πc(t) =

[
pc(t)−

wc

Lǫ
ct

]
Lcxc(t), (45)

where pc(t) is the price of the variety sold by the entrepreneurs, where Lǫ
c is a reduced form

agglomeration externality, and where Lcxc(t) is total demand faced by the entrepreneur in city
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c, xc(t) being the per capita demand.53 Observe from expression (45) the complementarity

between entrepreneurial talent, t, and the agglomeration externality, Lǫ
c. As argued before,

this is a basic force pushing towards sorting along skills into larger cities. However, in the

presence of selection things are more complicated since profits depend in a non-trivial way on

market size in general equilibrium. As shown in the next section, the complementarity is also a

basic force that dilates the income distribution of entrepreneurs and, therefore, leads to larger

income inequality in bigger cities.

Maximizing profits (45) with respect to prices yields the standard condition

pc(t) =
Ex,p

Ex,p − 1

wc

Lǫ
ct

, (46)

where Ex,p = 1/r(xc(t)) is the price elasticity of per capita demand xc(t), which can be

expressed using the ‘relative love for variety’, r(·) (henceforth, rlv; Zhelobodko, Kokovin,

Parenti, and Thisse, 2012).54 The profit of an agent who produces a variety with talent t ≥ tc

located in a city of size Lc, is then given by:

πc(t) =
r(xc(t))

1 − r(xc(t))

wc

t︸ ︷︷ ︸
=µ(t,tc,Lc)

L1−ǫ
c xt (47)

where µ(t, tc,Lc) denotes the profit margin of a type-t agent in a city with cutoff tc and size Lc.

The set of entrepreneurs who produce differentiated varieties is endogenously determined

by the cutoff tc. More formally, agents self-select into occupations (entrepreneurs vs workers)

based on the maximum income they can secure. The selection condition that pins down the

marginal entrepreneur is given as follows:

πc(tc)−wct
a
cL

ξ
c = 0, (48)

where Lξ
c is an agglomeration externality that makes workers more productive (increases their

effective labor). In words, the marginal entrepreneur earns profits equal to the wage she could

secure as a worker, whereas all agents with talent t such that πc(t) > wct
aL

ξ
c choose to become

entrepreneurs and the others become workers.

The key questions to be addressed are the following. What is the impact of city size Lc

on: (i) the occupational structure via tc; and (ii) how does the talent composition of the city,

53For simplicity, we assume that aggregate demand Xc(t) = Lcxc(t). This will hold true in quasi-linear settings
or when preferences are such that aggregate demand depends on some summary statistic (a ‘generalized Lagrange
multiplier’). The latter property amounts to imposing some form of quasi-separablility on the inverse of the
subutility function as in Behrens and Murata (2007).

54In additively separable models, where utility is given by U =
∫
u(xt)dFc(t), we have Ex,p = 1/r(xt), where

r(x) = −xu′′(x)/u′(x) ∈ (0,1). Condition (46) links the firms’ markups solely to the properties of the subutility
function u (via the rlv). The way that market size affects selection crucially depends on the properties of r(·) and,
therefore, on the properties of preferences. Note that r(·) is a function of individual consumption xt and that it
will, in general, be neither constant nor a monotonic function.
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Fc(·), and various agglomeration externalities, interact with selection? We then also look at the

distribution of incomes within and across groups in the next section.

4.2.2 ces illustration

To keep things simple, let us start with the well-known case of ces preferences: u(x) = xρ. In

that case r(xc(t)) = 1− ρ is constant and independent of individual consumption (and thus of

city size). Aggregate ces demand can be expressed as Lcxc(t) = Lc[Ac/pc(t)]1/(1−ρ), where Ac

is some city-specific market aggregate that depends on the distribution of income in the city

but that is taken as given by each entrepreneur. From (46), we have constant markup pricing:

pc(t) = wc/(ρL
ǫ
ct).

Plugging xc(t) and pc(t) into profits yields

πc(t) = ρ
ρ

1−ρ (1 − ρ)L
1+ǫ

ρ
1−ρ

c A
1

1−ρ
c

(wc

t

) ρ
ρ−1

.

The occupational selection condition πc(tc) = wct
a
cL

ξ
c can then be written as

L
1+ǫ

ρ
1−ρ−ξ

c

(
Ac

wc

) 1
1−ρ

= tc
a− ρ

1−ρρ
ρ

ρ−1
1

1 − ρ
. (49)

In general equilibrium, the term Ac/wc is pinned down by the city-wide market clearing con-

dition. Consider the labor market clearing condition: agents who do not become entrepreneurs

are workers which will be hired by the entrepreneurs. That condition is given by

∫ tc

tc

taLξ
cdFc(t) =

∫ tc

tc

Lcxc(t)

Lǫ
ct

dFc(t). (50)

Inserting the expression Lcxc(t) = Lc(Ac/pc(t))1/(1−ρ) and simplifying, we obtain the rela-

tionship:

L
1+ǫ

ρ
1−ρ−ξ

c

(
Ac

wc

) 1
1−ρ

︸ ︷︷ ︸
ZPC

ρ
1

1−ρ

∫ tc

tc

t
ρ

1−ρ dFc(t) =
∫ tc

tc

tadFc(t)

⇒ tc
a− ρ

1−ρ
ρ

1 − ρ

∫ tc

tc

t
ρ

1−ρ dFc(t) =
∫ tc

tc

tadFc(t),

where we have replaced ZPC by the selection condition (49). As can be seen, the last condition

depends only on the selection cutoff tc. Hence, conditional on the distribution of skills – as

captured by the distribution Fc(·) and the support [tc, tc] – the selection cutoff tc is independent

of city size, although profits are increasing in the direct effect of Lc. The reason is that Ac/wc

is endogenously determined in the city-wide general equilibrium. Any increase in Lc triggers

an inverse fall in Ac/wc, so that profits and workers’ wages increase in the same proportion in

52



equilibrium. Consequently, city size Lc has no bearing on selection when preferences are ces.

Two cities with different sizes but identical skill composition have the same selection cutoff

and the same share of entrepreneurs. These findings seem in line with the empirical results by

Combes, Duranton, Gobillon, Puga, and Roux (2012) and with the observation that the share

of self-employed (a proxy for ‘entrepreneurship’) is independent of city size in the us (see the

left panel of Figure 4 in Section 2.4). Observe though that there is still an effect of sorting on

selection: a city c with a better underlying skill distribution than a city c′ – for example because

Fc(·) first-order stochastically dominates Fc′(·) – has a larger tc in equilibrium.

There are two main take-away messages from the foregoing analysis. First, selection effects

are inherently a general equilibrium phenomenon. Since large cities (especially msas) can

be viewed as large economic systems, taking into account general equilibrium effects strikes

us as being important. Neglecting those effects may lead to erroneous assessments as to the

impacts of market size and talent composition on economic outcomes. Larger cities may be

tougher markets, but they are also bigger and richer markets. Taking into account income

effects and resource constraints is an important part of the analysis. Second, sorting induces

selection. Once sorting is controlled for, there may or may not be an additional effect of market

size on selection. In other words, larger markets may or may not have ‘tougher selection’

(conditional on sorting). The absence of selection effects due to market size in the above

example is an artifice or the ces structure where markups are constant (Zhelobodko, Kokovin,

Parenti, and Thisse, 2012; Behrens, Duranton, and Robert-Nicoud, 2014; Behrens, Pokrovsky,

and Zhelobodko, 2014). Yet, selection is still influenced by the talent composition of the city.

General equilibrium effects matter.

4.2.3 Beyond the ces

The ces structure is arguably an extremely special one. Unfortunately, little is known to

date about selection with more general preferences and demands. What is known is that

the selection cutoff tc usually depends on Lc in general equilibrium, essentially since markups

are variable and a function of Lc. Two models where market size matters for the selection of

heterogeneous producers are Ottaviano (2012) and Behrens and Robert-Nicoud (2014b). They

build on the Melitz and Ottaviano (2008) quadratic preferences model to study the relationship

between market size and selection in a new economic geography and in a monocentric city

setting, respectively. However, sorting along skills is absent in those models. The same holds

true for the models building on cara preferences (Behrens, Mion, Murata, and Südekum,

2012, 2014). We are not aware of any model displaying between-city sorting in the presence of

non-trivial selection effects.

Behrens, Pokrovsky and Zhelobodko (2014) use general additive preferences in a quasi-

linear setting to show that larger markets may have either tougher selection (fewer en-
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trepreneurs) or weaker selection (more entrepreneurs), depending crucially on the properties of

preferences.55 In specifications that many consider as being the normal case (e.g., Vives, 2001),

demands become less elastic with consumption levels so that larger cities have tougher selec-

tion and fewer entrepreneurs.56 We suspect that models where larger markets put downward

pressure on prices and markups may yield additional effects of selection on sorting. However,

to the best of our knowledge, little progress has been made in that direction to date.

4.2.4 Selection and sorting

How do selection and sorting interact? In the foregoing, we have developed a simple example

that shows that sorting induces selection, even when market size does not directly matter.

Clearly, selection has also an impact on sorting by changing the payoff structure for agents.

The basic question for sorting is always whether larger markets are more profitable places

for more talented entrepreneurs. From (47), the single crossing condition can be expressed as

follows (recall that we hold the distribution of talent Fc(·) in the city fixed):

∂2πc(t)

∂Lc∂t
= (1 − ǫ)L−ǫ

(
∂x

∂t
µ+

∂µ

∂t
x

)
+ L1−ǫ

(
∂2µ

∂t∂Lc
x+

∂µ

∂t

∂x

∂Lc
+

∂2x

∂t∂Lc
µ+

∂x

∂t

∂µ

∂Lc

)

+
∂tc

∂Lc
L1−ǫ

(
∂2µ

∂t∂tc
x+

∂2x

∂t∂tc
µ+

∂µ

∂t

∂x

∂tc
+
∂x

∂t

∂µ

∂tc

)
.

The first term in the right-hand side above is the ‘profit margin effect’, which depends on

how markups and output change with productivity. First, more productive firms sell larger

quantities (∂x/∂t > 0; Zhelobodko, Kokovin, Parenti, and Thisse, 2012). Second, the effect of

productivity on profit margins (∂µ/∂t) is generally ambiguous and depends on whether the

rlv r(·) is an increasing or decreasing function of productivity. In the ces case the first term is

unambiguously positive, but this is not a general result.

The second term captures the interactions between talent and size that influence the en-

trepreneur’s profits. This term cannot be unambiguously signed either. Whereas the terms

∂x/∂t and ∂x/∂Lc are generally positive and negative, respectively, the other terms cannot be

signed a priori. For example, per unit profit may increase or decrease with market size and

with productivity under reasonable specifications for preferences.

The last term, which we call the selection effect (∂tc/∂Lc), is also ambiguous. The basic

selection term ∂tc/∂Lc cannot be signed in general, as we have argued above. The reason is

that it depends on many features of the model, in particular on preferences.

55The impact of a change in city size Lc on the selection cutoff tc – and thus on the share of entrepreneurs and
the range of varieties can go either way, depending on the scale elasticity of u(·) and its ‘relative love for variety’.

56This class of preferences includes the quasi-linear quadratic model of Melitz and Ottaviano (2008), Ottaviano
(2012) and Behrens and Robert-Nicoud (2014b), as well as the cara specification of Behrens and Murata (2007)
and Behrens, Murata, Mion, and Südekum (2012, 2014).
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To summarize, even in simple models of selection with heterogeneous agents, little can be

said a priori on how agents sort across cities in general equilibrium. The main reason for this

negative result is that sorting induces selection (via Fc(·) and Lc), and that selection changes

the payoffs to running firms. Depending on whether those payoffs rise or fall with city size for

more talented agents, we may or may not observe pam sorting across cities. Supermodularity

may fail to hold, and analyzing sorting in the absence of supermodularity is a difficult problem.

Many equilibria involving non-trivial patterns of sorting may in principle be sustained.

4.2.5 Empirical implications and results

Distinguishing between sorting and selection has a strong conceptual basis: it is location choice

vs. occupation (either as a choice or as an outcome). Distinguishing between the two is hard

empirically. The key difficulties are illustrated by Figure 10. Arrows (a) show that there is a

causal relationship from the talent composition to the size of a city: tougher cities repel agents.

Ceteris paribus, people rather want to be ‘first in the village than second in Rome’. We refer to

this as sorting. Arrows (b) show that there is also a causal relationship in the opposite direction,

from city size to talent: the talent composition of a city changes with its size. We refer to this as

selection. The econometrician observes the equilibrium tuples (tc,Lc) across the urban system.

To identify selection, it is necessary to have exogeneous shifts in sorting and vice versa. This is

difficult, since sorting is itself endogeneous. In the end, distinguishing sorting from selection ex

post is very difficult since both are observationally equivalent and imply that the productivity

composition varies systematically across markets.57

The empirical evidence on selection effects to date is mixed. This may be a reflection of their

theoretical ambiguity, or of their intrinsic relationship with sorting effects. Di Addario and Vuri

(2010) find that the share of entrepreneurs is increasing in population and employment density

in Italian provinces. However, once individual characteristics and education are controlled

for, the share of entrepreneurs is decreasing in market size. The probability of young Italian

college graduates to be entrepreneurs three years after graduation decreases by 2–3 percentage

points when the population density of a province doubles. About one third of this ‘selection

effect’ seems to be explained by increased competition among entrepreneurs within industries.

However, conditional on survival, successful entrepreneurs in dense provinces reap the benefits

of agglomeration: their income elasticity with respect to city size is about 2–3%. Sato, Tabuchi,

and Yamamoto (2010) find similar results for Japanese cities. Using survey data, they document

that the ex ante share of individuals who desire to become entrepreneurs is higher in larger

and denser cities: a 10% increase in density increases the share of prospective entrepreneurs

57Okubo, Picard, and Thisse (2010) refer to the ‘spatial selection’ of heterogeneous agents when talking about
‘sorting’. That terminology clearly reveals how intrinsically linked sorting and selection really are.
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by about 1%. It however reduces it ex post by more than that, so that the observed rate of

entrepreneurship is lower in denser Japanese cities.

Figure 10: Interactions between sorting and selection.
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To summarize, the empirical evidence suggests that larger markets have more prospective

entrepreneurs (more entrants), but only a smaller share of those entrants survive (tougher

selection).58 Those who do survive in larger markets perform, however, significantly better,

implying that denser markets will also be more unequal. Additional evidence for positive

selection effects in larger markets in the us is provided by Syverson (2004, 2007) and by

Campbell and Hopenhayn (2005). By contrast, Combes, Duranton, Gobillon, Puga, and Roux

(2012) find no evidence for selection effects – defined as the left-truncation of the productivity

distribution of firms – when comparing large and small French cities. This finding relies on

the indentifying assumption that the underlying (unobserved) productivity distributions are

the same in small and large cities, and the results are consistent with the ces model.

5. Inequality

Heterogeneous agents face heterogeneous outcomes. Hence, it is natural to study issues related

to the second moments of the distributions of outcomes. Specifically, one may ask if larger cities

are more unequal places than small towns? What mechanisms drive the dispersion of income

in large cities? And how does inequality depend on sorting and selection?

We have seen in the previous sections of this chapter how the size (agglomeration

economies) and composition (selection and sorting) of cities influence occupational choices

58The theoretical predictions of Behrens and Robert-Nicoud’s (2014b) model are consistent with this finding).
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and individual earnings. They thus naturally influence the distribution of earnings within

cities. Figure 5 reports that large cities are more unequal than smaller ones and suggests that

this effect is the joint outcome of composition and size effects (left panel) and of an urban

premium that varies across the wage distribution (right panel). Indeed, the partial correlation

between city size and city Gini is positive, whether we control for the talent composition of

cities (using the share of college graduates as a proxy) or not, and it is larger when we control

for it (dashed line) than when we do not (solid line).

Studying the causes and effects of urban inequality is important for at least two reasons.

First, earning and wealth inequality seems to be on the rise in many countries (Piketti, 2014)

and understanding this rise at the country level requires at least a partial understanding of the

positive relationship between city size and earnings inequality. Indeed, Baum-Snow and Pavan

(2014) report that at least a quarter of the overall increase in earnings inequality in the us over

the period 1979-2007 is explained by the relatively high growth of earnings inequality in large

urban areas.59 Second, earnings inequality at the local level matters per se: people perceive

inequality more strongly when they see it at close range, and cities are not only the locus

where inequality materializes but they are also hosts to mechanisms (sorting and selection)

that contribute to changes in that inequality. As such, focusing on cities is of primary interest

when designing policies that aim at reducing inequality and its adverse social effects. This is a

complex issue because ambitious redistributive policies at the local level may lead to outflow

of wealthy taxpayers and an inflow of poor households, a phenomenon that is thought to have

contributed to the financial crisis that hit nyc in the 1970s.

Let y(t,Lc,Fc) denote the earnings of an individual with talent t who lives in city c of popu-

lation size Lc and talent composition Fc. It immediately follows that the earnings distribution

in any city does not only inherit some properties of its talent distribution, but that its size and

its composition both affect its shape. In this section, we consider two modifications of (26) to

study how the composition and the size of cities are related to urban inequality as measured

by the Gini coefficient of city earnings. We start with sorting.

5.1 Sorting and urban inequality

Consider first the following slightly generalized version of (26):

y(t,Lc,Fc) = Act
aLǫ

c, (51)

where Ac is the usual tfp shifter and Fc is the talent composition of c. To fix ideas, assume

that the distribution of talent Fc is city-specific and log-normal with:60

ln t ∼ N (µtc, σ
2
tc). (52)

59The measure of earnings inequality in Baum-Snow and Pavan (2014) is the variance of log hourly wages.
60This convenient assumption allows us to parameterize the whole distribution of talents with only two

parameters, µtc and σtc, which simplifies the analysis below.
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Assumptions (51) and (52) together imply that earnings y in city c are also log-normally

distributed and the Gini coefficient is a function of the standard deviation of log-earnings

in city c only (Aitchison and Brown, 1957):

Gini (Lc,Fc) = 2Φ

(
σyc√

2

)
− 1, (53)

where Φ(·) is the cumulative of the normal distribution and σyc = aσtc is the standard deviation

of log-earnings. It immediately follows from Φ′(·) > 0 and the definition of σyc that earnings

inequality is increasing in talent inequality (a composition effect), namely,

∂Gini (Lc,Fc)

∂σtc
=
∂Gini (Lc,Fc)

∂σyc

∂σyc

∂σtc
= a

√
2φ

(
σyc√

2

)
> 0, (54)

where φ(·) is the density of the normal distribution and the second equality follows from the

definition of σyc. Observe that city size has no direct effect on the Gini coefficient of earnings.61

This is because agglomeration economies benefit all talents in the same proportion in (51).

We know from the previous section that sorting and selection effects imply that the compo-

sition of large cities differs systematically from the composition of smaller ones. That is to say,

Lc and Fc are jointly determined in general equilibrium. We may thus write:

dGini (Lc,Fc)

dLc
=
∂Gini (Lc,Fc)

∂σtc

dσtc
dLc

,

where the partial derivative is from (54). This simple framework is consistent with the positive

partial correlation between urban Gini and city size in the left panel of Figure 5 if and only if

dσtc/dLc > 0. If urban talent heterogeneity is increasing in city size, as in Combes, Duranton,

Gobillon, and Roux (2012) and Eeckhout, Pinheiro, and Schmidheiny (2014), or if large cities

attract a disproportionate share of talented workers (so that the Gini coefficient of talents is

increasing in city size), then this inequality holds. Glaeser, Resseger, and Tobio (2009) report

that differences in the skill distribution across us msas explain one third of the variation in Gini

coefficients. Variations in the returns to skill may explain up to half of the cross-city variation

in income inequality according to the same authors. We turn to this explanation next.

5.2 Agglomeration and urban inequality

Agglomeration economies affect all talents to the same degree in the previous subsection. This

is counterfactual. Using individual data, Wheeler (2001) and Baum-Snow and Pavan (2012)

estimate that the skill premium and the returns to experience of us workers are increasing in

61Note that urban size has a positive effect on the variance of earnings, varyc = exp(2µyc + σ2
yc)
[
exp(σ2

yc)− 1
]
,

where µyc = µtc + ln Ac + ǫ lnLc.
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city size.62 A theoretical framework that delivers a positive relationship between city size and

the returns to productivity is provided in Davis and Dingel (2012) and Behrens and Robert-

Nicoud (2014b). We return to the latter in some detail in subsection 5.3. To the best of our

knowledge, the assignment mechanism similar to Rosen’s (1981) ‘Superstar Effect’ of the former

– with markets suitably reinterpreted as urban markets – and the pro-competitive effects that

skew market shares towards the most productive agents of the latter are the only mechanisms

to deliver this theoretical prediction.

To account for this, we now modify (26) as follows:

y(t,Lc,Fc) = AcL
a+ǫt
c , where t ∼ N (µt, σt). (55)

These differ from (51) and (52) in two ways. First, y is log-supermodular in size and talent

in (55) but it is only supermodular in (51): ‘simple’ supermodularity is not enough to drive

complementarity between individual talent and city size. Second, talent is normally distributed

and we assume that the composition of talent is constant across cities, i.e., Fc = F for all c.

As before, our combination of functional forms for earnings and the distribution of talent

implies that the distribution of earnings is log normal and that the city Gini is given by (53).

The novelty is that the standard deviation of log-earnings is increasing in city size, which is

consistent with the empirical finding of Baum-Snow and Pavan (2014):

σyc = σtǫ lnLc. (56)

Combining (53) and (56) implies that urban inequality is increasing in city size:

∂Gini (Lc,Fc)

∂ lnLc
=
∂Gini (Lc,Fc)

∂σyc

∂σyc

∂ lnLc
= σtǫ

√
2φ

(
σyc√

2

)
> 0, (57)

where the second expression follows from (56). From an urban economics perspective, ag-

glomeration economies disproportionately benefit the most talented individuals so that the

urban premium is increasing in talent. From a labor economics perspective, and assuming that

observed skills are a good approximation for unobserved talents, this result means that the

skill premium is increasing in city size.

Putting the pieces together, assume finally that city size and individual talent are log-

supermodular as in (55) and that the talent distribution is city-specific as in subsection 5.1:

y(t,Lc,Fc) = AcL
a+ǫt
c , where t ∼ N (µtc,σtc). (58)

Then the relationship between urban inequality and city size is the sum of the size and

composition effects:

dGini (Lc,Fc)

dLc
=

∂Gini (Lc,Fc)

∂Lc
+
∂Gini (Lc,Fc)

∂σct

dσct
dLc

=
√

2ǫ
Lc

σtc

(
1 + lnLc

d lnσtc
d lnLc

)
φ

(
σyc√

2

)
,

62See also Baum-Snow and Pavan (2014) for evidence consistent with this mechanism. These authors also
report that the positive relationship between urban inequality and city size has strengthened between 1979 and
2007, explaining a large fraction of the rise in within-group inequality in the us.
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where the second equality follows from (54), (57), and (58). Both terms are positive if

dσtc/dLc > 0. The solid line on the left panel of Figure 5 reports the empirical counterpart to

this expression.63

5.3 Selection and urban inequality

So far, we have allowed urban inequality to depend on the talent composition of cities, city

size, or both. There was no selection. In order to study the relationship between selection

and urban inequality, we introduce selection in a simple way by imposing the following set

of assumptions. Assume first that selection takes a simple form, where the earnings of agents

endowed with a talent above some threshold tc take the functional form in (51) and are zero

otherwise:

y(t, tc,Lc) =

{
0 if t ≤ tc

Act
aLǫ

c if t > tc.
(59)

We refer to the fraction of the population earning zero, Φc(tc), as the ‘failure rate’ in city c.

Second, we rule out sorting and assume that the composition of talent is invariant across cities,

i.e., Fc = F , all c, and that talents are log-normally distributed as in (52). Third, we assume

that the conditional distribution of talent above the survival selection cutoff tc is reasonably

well-approximated by a Pareto distribution with shape parameter k > 1:

F (t | t ≥ tc) = 1 −
(
tc

t

)k

. (60)

We use this approximation for two related reasons. First, Pareto is a good approximation of

the upper tail of the log-normal distribution in (52) – and this is precisely the tail of interest

here. Second, the Gini coefficient associated with (59) and (60) obeys a simple functional form,

Gini(tc,Lc) = Φ(tc) +
1

2ak − 1
[1 − Φ(tc)] =

1 + 2(ak − 1)Φ(tc)

2ak− 1
, (61)

whereas the Gini coefficient associated with the conditional log-normal Φ(t | t ≥ tc) does

not. The first term in (61) is the decomposition of the Gini coefficient into the contributions

of the zero-earners and of the earners with a talent above the cutoff tc, respectively. The term

1/(2ak − 1) is the Gini computed among the sub-population of agents with a talent above tc.

Note that this formula for the Gini coefficient is valid only if ak > 1 because any Gini coefficient

belongs to the unit interval by definition. It follows by inspection of the second term of (61)

that the Gini coefficient is increasing in the extent of selection as captured by Φ(tc).

63The empirical relationship between urban density and inequality is less clear. Using worker micro-data and
different measures of earnings inequality from 1970 to 1990 – including one that corrects for observable individual
characteristics – Wheeler (2004) documents a robust and significantly negative association between msa density
and inequality, even when controlling for a number of other factors. This suggests that workers in the bottom
income quintile benefit more from density than workers in the top income quintile, which maps into smaller
earnings inequality in denser cities.
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We propose a model of urban systems that fits the qualitative properties of this reduced

form model in Behrens and Robert-Nicoud (2014b). Preferences are quasi-linear and quadratic

and t is Pareto distributed as in Melitz and Ottaviano (2008). Ex-ante homogenous workers

locate in cities with possibly heterogenous Ac. Cities endowed with a large Ac attract more

workers in equilibrium. In turn, large urban markets are more competitive and a smaller

proportion of workers self-select into entrepreneurship as a result, i.e. the failure rate Φ(tc) is

increasing in city size. This is related with our fact 4 (selection) for the us and consistent with

the empirical findings of Di Addario and Vuri (2010) and Sato, Tabuchi, and Yamamoto (2012)

for Italy and Japan, respectively. Recalling that workers are homogeneous prior to making their

location decision in Behrens and Robert-Nicoud (2014b), it follows that returns to successful

entrepreneurs are increasing in city size. This latter effect is absent in (59), but is accounted for

in the model we develop in subsection 5.2.

We can finally compute the relationship between urban inequality and city size in the

absence of sorting and agglomeration effects as follows:

dGini (tc,Lc)

dLc
=
∂Gini (tc,Lc)

∂tc

dtc
dLc

= 2φ(tc)
ak− 1

2ak − 1

dtc
dLc

,

which is positive if and only if dtc/dLc > 0, and where we have made use of the partial

derivative of (61) with respect to tc. The interaction between selection and size may thus be

conducive to the pattern illustrated in Figure 5. Behrens, Pokrovsky, and Zhelobodko (2014)

show that the equilibrium relationship between urban selection and city size depends on the

modeler’s choice of functional forms for preferences. It can even be non-monotonic in theory,

thus suggesting that the impacts of size on inequality could also be non-monotonic.

6. Conclusions

We have extended the canonical urban model along several lines to include heterogeneous

workers, firms, and sites. This framework can accommodate all key stylized facts of Section 2

and it is useful to investigate what heterogeneity adds to the big picture. Two direct conse-

quences of worker and firm heterogeneity are sorting and selection. These two mechanisms

– and their interactions with agglomeration economies and locational fundamentals – shape

cities’ productivity, income, and skill distributions. We have also argued that more work

is needed on the general equilibrium aspects of urban systems with heterogeneous agents.

Though difficult, making progress here is key to obtain a full story about how agents sort

across cities, select into occupations, and reap the benefits from and pay the costs of urban

size. The first paper doing so (albeit in a two-city environment) is Davis and Dingel (2012).

We use this opportunity to point out a number of avenues along which urban models

featuring selection and sorting with heterogeneous agents need to be extended. First, we need

models where sorting and non-trivial selection effects interact with city-wide income effects
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and income distributions. This is important if we want to better understand how sorting and

selection affect inequalities in cities, and how changes in the urban system influence the macro

economy at large. Unfortunately, modeling sorting and selection in the presence of income

distributions and non-trivial income effects is a notoriously difficult task. This is probably

one explanation for the strong reliance on representative agent models which, despite their

convenience, do not teach us much when it comes to sorting, selection, and inequality. A

deeper understanding of the interactions between selection and sorting should also allow us

to better think about empirical strategies aimed at disentangling them.

Second, in the presence of heterogeneous agents, the within-city allocation of those agents

becomes an interesting topic to explore. How do agents organize themselves in cities, and

how does heterogeneity across and within cities interact to shape the outcomes in the urban

system? There is a large literature on the internal structure of cities, but that literature typically

deals with representative agents and is only interested in the implications of city structure for

agglomeration economies, land rents, and land use (Beckman, 1976; Fujita and Ogawa, 1982;

Lucas and Rossi-Hansberg, 2002; Mossay and Picard, 2011). Extending that literature to include

heterogeneous agents seems important to us. For example, if agents sort themselves in specific

ways across cities – so that richer agents compete more fiercely for good locations and pay

higher land rents – real income inequality in cities may be very different from nominal income

inequality. The same holds true for different cities in the urban system, and understanding how

heterogeneous agents allocated themselves across and within cities is key to understanding the

income and inequality patterns we observe. Davis and Dingel (2013) provide a first step in that

direction.

Third, heterogeneous firms and workers do not really interact in urban models. Yet, there is

a long tradition in labor economics that deals with that interaction (see, e.g., Abowd, Kramarz,

and Margolis, 1999). There is also a growing literature in international trade that investi-

gates the consequences of the matching between heterogeneous firms and workers (Helpman,

Itskhoki, and Redding, 2010). Applying firm-worker matching models to an urban context

seems like a natural extension, and may serve to better understand a number of patterns we

see in the data. For example, Mion and Naticchioni (2009) use matched employer-employee

data for Italy and interpret their findings as evidence for assortative matching between firms

and workers.64 Yet, this assortative matching is stronger in smaller and less dense markets,

thus suggesting that matching quality is less important in bigger and denser markets. Theory

has, to the best of our knowledge, not much to say about those patterns and models with

heterogeneous workers and firms are obviously required to make progress in that direction.

Last, the attentive reader will have noticed that our models depart from the canonical

framework of Henderson (1974) by not including transportation or trade costs, so that the

64The positive assortative matching between firms and workers, or its absence, is a difficult and still open issue
in labor economics.
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relative location of cities is irrelevant. Multi-city trade models with heterogeneous mobile agents

are difficult to analyze, yet progress needs to be made in that direction to better understand

spatial patterns, intercity trade flows, and the evolution of the urban system in a globalizing

world. In a nutshell, we need to get away from models where trade is either prohibitively

costly or free. We need to bring back space into urban economic theory, just as international

trade brought back space in the 1990s. The time is ripe for New Urban Economics featuring

heterogeneity and transportation costs in urban systems.
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