Neighborhood and Network Effects^{*†}

Giorgio Topa[‡] Yves Zenou[§]

August 19, 2014

Abstract

In this chapter, we provide an overview of research on neighborhoods and social networks and their role in shaping behavior and economic outcomes. We include discussion of empirical and theoretical analyses of the role of neighborhoods and social networks in crime, education and labor-market outcomes. In particular, we discuss in detail identification problems in peer, neighborhood and network effects and the policy implications of integrating the social and the geographical space, especially for ethnic minorities.

Keywords: Social networks, neighborhoods, group-based policies, ethnic minorities, labor economics.

JEL Classification: C23, D85, J15, J64, K42, R14, Z13.

^{*}Prepared for the *Handbook of Regional and Urban Economics, Volume 5*, G. Duranton, V. Henderson and W. Strange (Eds.).

[†]We thank Gilles Duranton, Jessie Handbury, Vernon Henderson, Steve Ross and Will Strange for very helpful comments.

[‡]Federal Reserve Bank of New York and IZA. E-mail: giorgio.topa@ny.frb.org.

[§]Stockholm University, IFN, and CEPR. E-mail: yves.zenou@ne.su.se.

1 Introduction

Our environment, whether it includes our neighbors, our peers or, more generally, our social contacts, crucially affects many facets of our lives. For example, the decision of an agent of whether or not to buy a new product, study hard, commit a crime, smoke, find a job is often influenced by the choices of his or her friends and acquaintances, neighbors, classmates, co-workers, professional contacts, etc. Economists –and before them, sociologists– have long recognized the importance of such non-market interactions in shaping behavior and outcomes in a large variety of contexts. A long, but only partial, list includes peer effects in the classroom and in the workplace, labor market referrals, smoking, crime, and other social pathologies, consumption externalities, herd behavior and "contagion" in financial networks, bankruptcy and foreclosure decisions, risk-sharing within households, communities, villages, sorting into residential neighborhoods, the adoption and diffusion of new technologies, the role of agglomeration economies in shaping cities and the location decisions of businesses, the role of human capital externalities in economic growth.

At a very abstract level, we can think of these social interactions as taking place within a "social space", defined by one's reference group –be it one's classmates, peers, neighbors, colleagues, other firms, and so on. There are various ways to model such a social space. Generally speaking, we need to define a set of individual agents (affecting each other), as well as the connections among them. These, in turn, help us define a notion of social or economic distance on the set of locations inhabited by agents in the abstract social space.

One large strand of literature has modeled the social space simply by characterizing the reference group of each agent. For peer effects in education, this is often the set of classmates or schoolmates. For the location decisions of households and firms, it is the set of residential neighbors or other firms in the same industrial district. Interactions are assumed to be symmetric within each reference group, and the various reference groups often define a proper partition of the set of agents. One particular example of this approach consists of the literature on neighborhood effects, which attempts to study how the composition of one's residential neighborhood affects one's outcomes with regard to, for instance, educational achievement, the ability to find a job, or the propensity to engage in crime.

Another strand of the literature has focused on the structure of connections within the abstract social space. This is often modeled using the tools of social network theory. As we describe in more detail in Section 3.1, a network is defined as a set of agents and a graph describing who is connected to whom. A growing empirical literature shows that the structure of the network, and the position of individual agents within it, play an important

role in shaping choices and outcomes.

The social space modeled by a network does not necessarily coincide with the physical space. Indeed, an individual may be closely connected to someone residing and working at the other end of the city or even in a different country. The social space –and the distance among agents– may be defined by ethnicity, race, age, nationality, tastes and many attributes other than physical distance. At the same time, it seems reasonable to think that the costs of interaction increase with physical distance, so that interactions may be easier and more frequent among agents who are physically close to each other. Therefore, in general, there will be some partial overlap between the social space modeled as a network and the physical space described by a residential neighborhood.

Finally, there are several mechanisms through which social interactions may affect behavior and outcomes. Social contacts may facilitate the flow of information about, for instance, job openings or the profitability of a new technology, thus influencing the choice set available to agents. Social contacts may also affect my tastes for a certain good, influencing the likelihood that I will consume that good. One's network or reference group may provide risk-sharing devices and opportunities for cooperation. There may also be complementarities in production or consumption through which social interaction effects operate.

In this chapter, we review the literatures on neighborhood and network effects. These two literatures have developed largely separately: the neighborhood effects literature has mostly focused on how residential neighborhoods may shape opportunities, choices and outcomes of individual agents living in them. This process has implications for urban policy, the evolution of neighborhoods and cities, the dynamics of segregation and inequality –to mention just a few. The theoretical and empirical study of networks has largely focused on the social space of connections and its implications for outcomes abstracting from physical space. We will review these two approaches separately first, and then attempt to bring them together in a more unified setting.

It is worth noting here that the neighborhood effects literature has for the most part ignored the micro-structure of connections underlying the social interactions occurring within the neighborhood. This is largely because of a data limitation problem: until recently, very few datasets were available that gave researchers information on both network connections and physical locations of agents. We will discuss recent advances in data collection efforts in what follows. Finally, neighborhood effects may arise not just because of social interactions within the neighborhood (or across adjacent neighborhoods), but also because of local shocks or institutions–such as a local business closing, or the presence of churches, clubs, and neighborhood associations. This is analogous to the education setting, where educational outcomes of students may be affected not only by their peers, but also by the teacher or the school.

One important issue concerns the identification and estimation of neighborhood or network effects. Because agents are assumed to affect each other –through information exchanges, preferences, or actions– a telltale sign of the presence of such effects is the presence of co-movements in observed outcomes across agents. However, it is extremely difficult to separately identify these effects from other forces that also bring about co-movements. First, there is a simultaneity problem: I affect my social contact, and simultaneously she affects me. This is known in the literature as the "reflection problem", and we will discuss it extensively in Section 3.2.1. Second, agents may sort into neighborhoods or networks on the basis of similar tastes or attributes that are unobserved to the econometrician. Again, this poses identification challenges. Finally, agents residing in the same neighborhood or social network may be exposed to similar correlated shocks that are, again, unobserved to the econometrician: for instance, good or bad local institutions, environmental factors that affect an entire set of neighborhoods, a plant closing and inducing a localized wave of unemployment. In what follows, we will discuss how each of the approaches developed below fares with regard to these identification and estimation challenges.

There exists a rich and long-standing neighborhood effects literature, developed both in the United States and in Europe. We first present the experimental approach, which mostly focuses on immigrants and refugees where the "natural" experiment comes from the fact that their location upon arrival in a new country is arguably "exogenous" because it is imposed by the local authorities of the host country. Other natural or randomized experiments include the relocation of families from public housing projects in poor neighborhoods to low-poverty neighborhoods, via housing vouchers. The Moving To Opportunity programs are perhaps the most well-known examples.

We also present a non-experimental approach to the analysis of neighborhood effects, where the identification strategy is clever and based on the smallest unit in the city, namely the city block. By arguing that the assignment of agents to city blocks is quasi-random (i.e. driven by factors orthogonal to possible unobservable attributes), researchers are able to separately identify neighborhood effects from other potential sources of co-movements.

Finally, we develop a structural approach where the theoretical models generate stationary distributions with well-defined properties over space. The parameters of these models can then be estimated by matching moments from the simulated spatial distribution generated by the model with their empirical counterparts from spatial data on neighborhoods or cities. We then turn to the network literature. We first study settings in which the network is given. The main challenge in studying strategic interaction in social settings is the inherent complexity of networks. Without focusing on specific structures in terms of the games, it is hard to draw any conclusions. We focus on strategic complementarities so that a player's incentives to take an action (or a "higher" action) are increasing in the number of her friends who take the (higher) action. We look, in particular, at quite tractable "linear-quadratic" settings where agents choose a continuous level of activity. This simple parametric specification permits an explicit solution for equilibrium behavior as a function of the network, and thus leads to interesting comparative statics and other results that are useful in empirical work.

We then present the identification strategy based on the best-reply function of these models. This is mostly based on exclusion restrictions arising naturally from the partiallyoverlapping nature of network connections: simply put, my friends' friends may not necessarily be my friends. We also show how identification may survive (and in some cases be strengthened) when one takes into account the endogenous formation of networks. A note of caution is brought by the introduction of non-linear models of interaction, which may induce multiplicity of equilibria: we discuss some early attempts to estimate network models in the presence of such multiplicity. We conclude this section by reviewing different empirical results for crime, education, labor, health, etc.

In the last part of this chapter, we integrate the two previous literatures by analyzing how the combined effect of neighborhoods and networks affects the outcomes of individuals, focusing mostly on the labor market. This literature is, unfortunately, in its infancy and we review the scarce evidence and theoretical models on this topic.

The rest of this chapter unfolds as follows. In the next section, we look at neighborhood effects, differentiating between the reduced-form empirical literature on neighborhood effects (Section 2.1) and the structural approach (Section 2.2). Section 3 focuses on network effects by first providing some theoretical background (Section 3.1), then analyzing the econometric issues related to the empirics of networks (Section 3.2) and, finally, providing the main empirical results of this literature (Section 3.3). In Section 4, we study neighborhood and network effects together, looking first at the theoretical models (Section 4.1), then discussing the theoretical results (Section 4.2) and the empirical results (Section 4.3). Finally, Section 5 concludes.

2 Neighborhood effects

In this Section, we first review the reduced-form empirical literature that aims at estimating neighborhood effects in a variety of settings. We examine both experimental and non-experimental approaches. We then turn to more recent structural modeling and empirical work.¹

2.1 Reduced-form empirical literature on neighborhood effects

The reduced form empirical work on neighborhood effects has a long tradition in both economics and sociology. Much of the early work focused on the effects of growing up in disadvantaged neighborhoods on educational attainment, employment, and other indicators of socio-economic well-being. Public policy was an important component of this work, with a strong focus on poverty and inequality.² However, this work largely suffered from the Manski (1993) critique concerning the reflection problem. Most of the early work used simple regressions of individual outcomes on individual attributes, family and community attributes, and typically mean outcomes in the residential neighborhood. In the absence of an empirical strategy to separately identify the parameters of these models, most of this work suffered from a basic lack of identification.

Cognizant of these challenges, subsequent reduced-form work followed two broad strategies. The first is to exploit some natural variation arising from randomized or quasi-random experiments implemented in various cities to put into effect various policies. The second approach uses some innovative identification strategies to identify neighborhood effects using large datasets with detailed information on geography.

2.1.1 Experimental or quasi-experimental evidence

The first set of studies analyzes neighborhood effects by studying various randomized or natural experiments. The majority of these studies exploit housing relocation randomized experiments that allowed residents of low-income neighborhoods or in public housing projects to relocate to different neighborhoods. These experiments in principle allow the researcher to measure the effect of changing neighborhood characteristics on outcomes.

¹For overviews of this literature spanning several decades, see Jencks and Mayer (1990), Ioannides and Datcher (1999), Durlauf (2004) and Ioannides and Topa (2010).

²Jencks and Mayer (1990) and Brooks-Gunn et al. (1997) provide nice surveys of this early literature. Prominent examples include the work by Wilson (1987), Corcoral et al. (1989), Brooks-Gunn et al. (1992).

Popkin et al. (1993) study the impact of the Gautreaux program in Chicago, that helped relocate low-income families from public housing to private housing in the Chicago metropolitan area. While the selection of participants into the program was not random, the assignment to city versus suburban neighborhoods was quasi-random, based on the availability of units. The authors of the study find that moving to a suburban residential location was associated with a significantly higher chance of being employed than moving to a city location, even conditioning on observed personal characteristics. The employment gains are greater for those who never worked before.

Jacob (2004), on the other hand, exploits the quasi-random closing of high-rise public housing projects in Chicago during the 1990's. Families affected by the closings were offered Section 8 housing vouchers to move anywhere in the metropolitan area. Jacob compares school outcomes for students living in units affected by a closure to those for students in units in the same project that were not closed. Arguably the timing of building closures within a project is uncorrelated with unobserved characteristics of students. Contrary to the Gautreaux experiment, this paper finds no evidence of any impact of the demolitions and subsequent relocations on student outcomes.

Oreopoulos (2003) focuses on another source of quasi-random variation in neighborhood quality, namely the assignment of families to different housing projects in Toronto. By matching project addresses with an administrative panel of Canadians and their parents, this paper can examine the impact of neighborhood quality on the long run outcomes of adults who were assigned as children to different residential projects. Similarly to Jacob (2004), Oreopoulos (2003) finds again no effect of neighborhood differences on a wide variety of outcomes, including unemployment, mean earnings, income, and welfare participation. Further, while neighborhood quality does not affect outcomes, family background explains about 30% of the total variation in income and wages.

A large set of studies focuses on the Moving To Opportunity (MTO) program (Kling et al., 2005; Kling et al., 2007; Ludwig et al., 2001). This was a large, randomized experiment in which participants volunteered for the study, and were randomly assigned to one of three treatment: a control group received no new assistance, a Section 8 group received a housing voucher without geographical restrictions, a third group received a Section 8 voucher to move to a low-poverty neighborhood as well as mobility counseling. Relative to the control group, the two treatment groups indeed moved to neighborhoods with significantly lower poverty rates, less crime, and in which residents reported feeling safer.

MTO studies generally find no significant evidence of treatment effects with regard to economic outcomes, such as earnings, welfare participation or the amount of government assistance. However, these studies do find evidence of large and significant positive treatment effects on a variety of adult mental health measures. For teenage youth outcomes, an interesting dichotomy appears: in general, treatment effects were positive with regard to mental health and risky behaviors for female youth, but negative for males. These negative impacts for male youth were particularly large for physical health and risky behavior, suggesting that perhaps the neighborhood change induced a severe dislocation and social isolation, or rejection of the prevailing norms in the new neighborhood.

More recently, Ludwig et al. (2012) study the long-term effects of the MTO program, 10 to 15 years after the experiment. The authors look at intention-to-treat (ITT) effects for a variety of outcomes, grouped into economic self-sufficiency, physical health, mental health, and subjective well-being. Treatment effects are found not to be significant for economic outcomes, are positive but not statistically significant for physical health, are positive and marginally significant for mental health, and are significantly positive for subjective well-being.³

Our reading of this strand of literature, that by and large employs careful program evaluation approaches, is that the estimated neighborhood effects tend to be small for educational and economic outcomes. Larger effects are found for mental health outcomes. The MTOrelated literature represents perhaps the cleanest example of this approach.

However, it is important to note that there are important limitations in the extent to which the treatment effects identified through relocation experiments are informative about the nature of general forms of neighborhood effects per se. First, individuals studied must be eligible for a relocation program in the first place; this typically implies that the resulting sample is somewhat "special" (i.e. so as to be a resident in public housing) and may not be as sensitive to neighborhood effects as other individuals. More generally, even if the eligible population is representative of the target population, the results of an experiment based on a small sample may not scale up to broader populations because of the strong possibility that general equilibrium effects may arise in that case.

Second, the experimental design involves relocation to new neighborhoods that are, by design, very different from baseline neighborhoods. This implies that the identified treatment effect measures the impact of relocating to a neighborhood where individuals initially have few social contacts and where the individuals studied may be very different than the

 $^{^{3}}$ See, however, Bond and Lang (2014) for a discussion of "happiness scales". Depending on the assumptions made regarding the underlying distribution of subjective well-being, the MTO treatment effects may be positive or null with regard to subjective well-being. Still, there is strong evidence that MTO reduced various other measures of well-being, such as symptoms of depression.

average resident of the new neighborhood. In this way, the treatment effects identified with this design are necessarily a composite of several factors related to significant changes in neighborhoods that cannot be easily disentangled.

Another set of papers uses a different source of quasi-random variation in network composition and location, namely the resettlement of refugees into various countries. Beaman (2012) studies refugees resettled into various U.S. cities between 2001 and 2005 by the International rescue Committee – a large resettlement agency. The location decision by the agency for refugees without family already in the U.S. is arguably exogenous. Beaman posits a dynamic model of labor market networks inspired by Calvó-Armengol and Jackson (2004), where agents share information about jobs within their individual social networks. The model implies both a congestion effect due to competition for information among job seekers – which leads to negative correlation in outcomes within networks – and a positive effect of network connections on employment outcomes, going from older to more recent cohorts. These effects are dynamic: an increase in size of a given cohort will reduce expected employment outcomes for subsequent cohorts that arrive immediately after, but will gradually improve outcomes for later cohorts.

The empirical strategy exploits the variation in cohort size for different ethnicities in different cities at different points in time. The possibility of sorting or correlation between network size and unobserved city and ethnicity characteristics (possibly due to the agency's placement strategy) is addressed by controlling for individual characteristics that are observed to the agency, as well as city and nationality-cohort fixed effects. Beaman finds that a one standard deviation increase in the previous year's cohort for a newly arrived refugee lowers his employment probability by 4.9 percentage points. Conversely, an increase in longer-tenured network size improves employment outcomes by 4.3 percentage points. More senior social contacts also have a positive effect on expected wages. This study is notable for its emphasis on *dynamic* neighborhood effects. The model implications provide additional tools for identification.

Edin et al. (2003) and Åslund et al. (2011) exploit a similar source of quasi-random variation from a refugee resettlement program in Sweden during the late 1980's to study neighborhood effects in labor market and education outcomes, respectively. The authors argue convincingly that the initial assignment of refugee immigrants to neighborhoods within cities was uncorrelated with unobservable individual characteristics. In particular, "the individual could not choose his or her first place of residence due to the institutional setup, the practical limitations imposed by scarce housing, and the short time frame between the receipt of residence permit and placement." Further, there was no interaction between placement officers and immigrants, so any sorting could only take place on the basis of observable (to both the government officials and the econometrician) attributes.

The first study finds that a larger ethnic enclave in one's initially assigned location has a positive effect on earnings, especially for less-skilled immigrants: a one standard deviation increase in ethnic concentration raises earnings by 13% for less educated immigrants. These positive effects are increasing in the quality of the enclave as measured by earnings or selfemployment rates. The second study focuses on school performance, and finds that a one standard deviation increase in the share of highly educated adults (sharing the student's ethnicity) in the neighborhood of residence raises average grades in compulsory school by 0.8 percentile ranks.⁴

Damm (2009, 2014) and Damm and Dustmann (2014) also exploit a unique natural experiment between 1986 and 1998 when refugee immigrants to Denmark were assigned to neighborhoods quasi-randomly. The first papers focus on labor-market outcomes of ethnic minorities while the last paper looks at the effect of early exposure to neighborhood crime on subsequent criminal behavior of youth. In the latter, the authors find strong evidence that the share of young people convicted for crimes, in particular violent crimes, in the neighborhood increases convictions of male assignees later in life.⁵ Their findings suggest social interaction as a key channel through which neighborhood crime is linked to individual criminal behavior. We will go back to the issue of social interactions and crime in Section 3.3.3 below.

Finally, we wish to mention a separate strand of literature that also exploits natural experiments to evaluate the extent of residential neighborhood effects, in the context of housing and land prices. As an example, Rossi-Hansberg et al. (2010) examine how non-market interactions between residents of a given neighborhood (or across nearby neighborhoods) are reflected in land prices. They exploit a plausibly exogenous source of variation in the attractiveness of a given location provided by an urban revitalization program that was implemented in Richmond, VA between 1999 and 2004. The program gave funding for housing investments in targeted neighborhoods, including demolition, rehabilitation and new construction of housing. In addition, a "control" neighborhood was selected that was similar to the treated neighborhoods but did not receive any funding.

The study contains information on the location of homes that received funding, and the

⁴Åslund et al.(2010) also exploit this quasi-random assignment of immigrants to residential locations to revisit the "spatial mismatch" hypothesis. They find that indeed local access to jobs has a statistically and economically significant impact on employment outcomes.

⁵See also Jencks and Mayer (1990) and Gould et al. (2011) on the long-term effects of growing up in a poor and low-educated neighborhood.

amount of the funding. Housing prices and characteristics before and after the program are also observed. This allows the authors to estimate land prices before and after the policy was implemented, using a hedonic approach. They can therefore estimate the spatial extent of neighborhood quality externalities on land prices. In addition, by comparing treated and control neighborhoods, they can compute the magnitude of these externalities. The study finds that increases in land values decline with distance from the impact areas, as expected: housing externalities decline roughly by half every 1,000 feet. Further, the increase in land values arising from externalities brought about by the revitalization range between 2 and 6 dollars per dollar invested.

2.1.2 Non-experimental evidence

As mentioned above, a more promising approach in our view has relied on very detailed spatial datasets and clever identification strategies to identify neighborhood effects in various settings. Essentially, this set of papers exploits either quasi-random assignment of individual agents to small geographic units (such as Census blocks), or careful modeling of the mechanisms underlying social interaction effects that delivers clear testable implications that can be taken to the data.

Bayer et al. (2008) consider spatial clustering of individual work locations for a given residential location, as evidence of local referral effects. In order to separately identify labor market referrals from other spatially correlated effects, the authors estimate the excess propensity to work together (in a given city block) for pairs of workers who co-reside in the same city block (distinct from their work location), relative to the baseline propensity to work together for residents in nearby blocks (within a reference group of blocks). The key identifying assumption (which is tested on observable characteristics) is that there is no block-level correlation in unobserved attributes among block residents, after taking into account the broader reference group. An additional assumption underlying this research design is that a significant portion of interactions with neighbors are very local in nature – i.e., occur among individuals on the same block.⁶ We return to this question in Section 4.3.

Bayer et al. (2008) find that residing in the same block raises the probability of sharing the work location by 33%, consistent with local referral effects. Inferred referral effects

⁶More generally, as discussed in the Introduction to this Chapter, one important question concerns the extent of overlap between the social space spanned by individual social networks and the geographic space described by neighborhoods. Several sociological studies have examined this question, finding that a significant portion of social interactions occur at very close physical distance among agents. See for instance Wellman (1996), Otani (1999), Lee and Campbell (1999).

are stronger when they involve at least one individual who is more attached to the labor market, or individuals who are more likely to interact, e.g. because they have children of similar ages. The observed variation in the excess propensity to work in the same block is then used to construct a measure of network quality available to each individual in a given neighborhood. A one standard deviation increase in this measure has a positive effect on various labor market outcomes: labor force participation increases by about 3.4 percentage points for female workers, whereas hours worked increase by 1.8 hours per week on average and earnings by about 3.4 percent for male workers.⁷

Hellerstein et al. (2011) build on the identification strategy of Bayer et al. (2008) using matched employer-employee data at the establishment level from the 2000 Decennial Employer-Employee Database (DEED). They use Census tracts as the geographic unit of analysis, and compute the excess propensity to reside in the same tract for employees in a given *establishment*, relative to the likelihood to reside in the same tract for other employees who work in the same tract but not the same establishment (which may be due to commuting patterns or the spatial distribution of jobs and workers). Hiring network effects at the neighborhood level can be inferred if the share of residential neighbors among one's co-workers is significantly higher than that predicted by random hiring. They find that indeed the hiring effect of residential networks is significant, and especially strong for Hispanics and less skilled workers, and for smaller establishments. They also find that residential labor market network effects are stronger within than across races, suggesting racial stratification within residential social networks.

Hellerstein et al. (2014) extend this analysis using Longitudinal Employer-Household Dynamics (LEHD) data, which allow longitudinal observation of matched worker-employer pairs. This rich data source enables the authors to study additional features of labor market networks, including wage and turnover effects.⁸ The main findings are that residence-based networks have a robust effect on worker-employee matches, lowering turnover. This effect is especially strong for neighbors within the same racial or ethnic group. For wages, while

⁷Using a similar identification strategy as Bayer et al. (2008), Hawranek and Schanne (2014) look at how residential neighborhoods can serve as a pool of information for an informal labor market and investigate the effect of job referrals through one's residential location. They analyze the relationship between living and working together in the context of job referrals in the Rhine-Ruhr metropolitan area in Germany. They find very similar effects as in Bayer et al. (2008). Indeed, Hawranek and Schanne (2014) find that sharing the same immediate neighborhood raises the propensity to work together by 0.14 percentage points.

⁸Dustmann et al. (2011) and Galenianos (2013) develop predictions for learning models of referrals with regard to wage trajectories and separations as a function of tenure. Datcher (1983) provides empirical evidence on turnover using PSID data. Brown et al. (2014) provide evidence consistent with learning models of referrals using a unique dataset on a single large U.S. corporation.

overall connectedness with residential neighbors tends to raise wages, within-group connectedness has the opposite effect, lowering wages. This is suggestive of overall residence-based networks being associated with more productive matches, while ethnic or racial residential network effects may capture non-wage amenities. In general, this work highlights the neighborhood-specific nature of social networks, at least in the context of labor market networks.

Schmutte (2014) also uses matched employer-employee data from the LEHD. Adopting a similar identification strategy to Bayer et al. (2008), he studies whether residential labor market networks lead to matches with higher-paying employers. In particular, he estimates a firm-specific wage premium (following Abowd et al., 1999) and finds that workers who live in neighborhoods with higher-quality networks (measured by the average employer-specific wage premium of network members) are more likely to move to jobs with higher wage premia. This result holds for both employed and non-employed workers, and is not driven by direct referrals from current employees at a given firm.

This study, together with the Hellerstein et al. papers discussed above, brings important empirical insights into the nature of referral effects at the neighborhood level by combining the novel identification strategy of Bayer et al. (2008) with very rich data linking workers to firms at the establishment level. The longitudinal aspect of the LEHD is also important in enabling researchers to study dynamic implications such as turnover—in the case of Hellerstein et al. (2014)—as well as the quality of referral networks as in Schmutte (2014).

In a different setting, Helmers and Patnam (2014) use spatial proximity within villages in Andhra Pradesh, India to estimate neighborhood effects (spatial peer effects) in the production of cognitive skills for children between age eight and twelve. Households locations are precisely mapped within villages, and the authors construct nearest neighbor adjacency matrices, defined as \mathbf{G}_r in Section 3.1.1 below, to trace the village level social network. The main idea is then to again use geographic proximity as a proxy for social distance within individual social networks – a theme that appears often in this literature.

The authors use a strategy developed by Bramoullé et al. (2009), among others, to address the reflection problem and to separately identify endogenous from contextual peer effects (see Manski, 1993). This strategy essentially involves exploiting the partially overlapping nature of individual networks to use friends of friends as valid instruments for one's direct social contacts.⁹ Helmers and Patnam also use various strategies to address the possibility of correlated unobservables or sorting into networks. They find that, on average, a one standard deviation increase in the growth in cognitive achievement of a child's peers

⁹See Section 3.2.2 for a precise description of this identification strategy.

increases cognitive achievement of the child by 0.4 standard deviations. Further, social networks help partially insure against idiosyncratic shocks that hit a household and tend to adversely affect the child's cognitive achievement.

Patacchini and Zenou (2012) test how social networks affect the labor-market outcomes of ethnic minorities in England. They use a similar strategy as Helmers and Patnam (2014) by approximating *social proximity* between individuals by *geographical proximity*. Indeed, since ethnic communities tend to be more socially cohesive, a reasonable conjecture is that the density of people living in the same area is a good approximation for the number of direct friends one has, i.e. *strong ties*, especially if the areas are not too large and if people belong to the same ethnic group.¹⁰ In the same spirit, the density of individuals living in neighboring areas will be a measure of friends of friends, i.e. *weak ties*. Using this framework, Patacchini and Zenou look at the relationship between ethnic employment density and the probability of finding a job through social contacts and use *spatial data analysis techniques* to investigate the spatial scale of these effects. They find that the higher the percentage of a given ethnic group living nearby, the higher the probability of finding a job through social contacts. They also find that such an effect is, however, quite localized. It decays very rapidly with distance, losing significance beyond approximately 60 minutes travel time.¹¹

Conley and Udry (2010) use direct information on farmers' individual social networks in three villages in Ghana to estimate social learning in the adoption of new cultivation technologies. This paper contains two important innovations that make it very noteworthy: first, it relies on actual observation of individual networks rather than proxying for them with spatial proximity. Second, it lays down an explicit learning model that yields specific implications on the shape of interactions, which enable the authors to identify social effects separately from other, spatially correlated, confounding factors. The sequential nature of plantings and harvests enables the authors to observe how a given farmer reacts to news about his social contacts' choices and outcomes. Consistent with the learning model, the authors find that farmers are more likely to change their fertilizer use when other farmers using similar amounts of fertilizer get lower than expected profits; increase (decrease) their fertilizer use after their social contacts achieve high profits using more (less) fertilizer than they did; respond more to their neighbors' actions if they only recently started cultivating a particular crop; and respond more to the actions of veteran farmers.

 $^{^{10}}$ A similar approximation of the social space (approximated by the physical space) is used in Wahba and Zenou (2005) for the case of Egypt.

¹¹Conley and Topa (2002) use non-parametric methods to map out several dimensions along which social networks may exist in the context of urban unemployment, using mixtures of geographic, travel time, education and ethnic distance to characterize social distance.

Spatial neighborhood effects also play a role in a recent literature on foreclosures, following the recent housing boom and bust cycle in the United States. Campbell et al. (2011) study the effect of sales of foreclosed properties (and more generally, forced sales) on the price of nearby houses in the same neighborhood. They use comprehensive house transactions data from Massachusetts over the period 1987-2009, matched with information on deaths and bankruptcies of individuals. They find that forced sales in general, and those related to foreclosures in particular, are associated with significant price discounts. Further, local spillover effects from foreclosures are significant (foreclosures lower prices of nearby houses), but decline rapidly with distance. Harding et al. (2009) also find evidence of contagion effects in foreclosures. Several mechanisms can explain such spillovers, ranging from price discovery to the visual impact of run-down or vandalized properties, to a social interaction channel whereby individuals' valuations of their own homes are influenced by their neighbors' valuations (see Ioannides, 2003).

2.2 Neighborhood effects estimation using a structural approach

A family of papers uses structural models of social interactions to generate a rich stochastic structure that can be taken to data for estimation. Essentially, these models generate stationary distributions with well-defined properties over space (e.g., excess variance across locations, or positive spatial correlations). The parameters of these models can then be estimated by matching moments from the simulated spatial distribution generated by the model with their empirical counterparts from spatial data on neighborhoods or cities. The model parameters are locally identified (or, in some cases, set identification is attained).

Glaeser et al. (1996) explain the very high variance of crime rates across U.S. cities through a model in which agents' propensity to engage in crime is influenced by neighbors' choices. In doing so, they provide estimates for the range of social interactions. The model is a version of the voter model, in which agents' choices regarding criminal activity are positively affected by their social contacts' choices. One important innovation in this paper is to allow for "fixed agents", who are not affected by their neighbors' actions. The variance of crime outcomes across replications of the economy (i.e., cities) is inversely proportional to the fraction of fixed agents in an economy. The distance between pairs of fixed agents in the model yields a measure of the degree of interactions. By matching the empirical cross-city variance of various types of crime with that implied by the model, the authors estimate the extent of neighborhood effects for these different types of crime.

Topa (2001) analyzes a structural model of transitions into and out of unemployment to estimate the impact of any local social interaction effects on employment outcomes. The model posits that individuals may receive useful information about job openings from their employed social contacts (the nearest neighbors) but not from their unemployed ones. Formally, the transition probability from employment to unemployment P_{EU} depends only on individual attributes and is given by:

$$P_{EU} \equiv \Pr(y_{i,t+1} = 0 | y_{it} = 1; X_i) = \alpha(X_i)$$

where y_{it} is the employment status of agent *i* at time *t* (1 corresponds to employment and 0 to unemployment) and X_i is a vector of individual characteristics that may affect labor market outcomes. The reverse probability of finding a job from unemployment, P_{UE} , not only depends on individual characteristics, but also on information about job openings transmitted by agent *i*'s employed social contacts:

$$P_{UE} \equiv \Pr(y_{i,t+1} = 1 | y_{it} = 0; \ y_t, X_i) = \beta(X_i) + \phi_2(X_i) I_{it}(y_t)$$

where $I_{it}(y_t)$ is the information received about job openings, that depends on the average employment rate of the neighbors of agent *i*.

The model generates a first-order Markov process over the set of locations (defined at the Census tract level), and the positive local feedback implies that the stationary distribution of unemployment in the simulated city exhibits positive spatial correlations. The model parameters are estimated via indirect inference, comparing the simulated spatial distribution of unemployment generated by the model with the empirical one, using Census data for the city of Chicago in 1980 and 1990.

The identification strategy in this paper relies on the assumption that neighboring census tracts can only affect a given tract's employment outcomes through their employment levels but not through their own attributes, and on the use of ethnic distance and local community boundaries (as identified by residents) to distinguish local social interactions from other types of spatially correlated shocks. The key assumption is that social spillovers generated by information exchanges within networks are significantly weaker across tracts that are physically close but ethnically very different, or that belong to different local communities; on the other hand, other types of spatially correlated shocks may not be affected by such discontinuities across tracts. Indeed, the spatial correlation in crime outcomes across adjacent tracts does not depend on ethnic distance, or on whether the two tracts belong to the same local community. Finally, detailed tract level controls and fixed effects are also used in the estimation.

Conley and Topa (2007) extend Topa (2001) in several directions, using data for the Los Angeles metropolitan area. First, the model of local interactions and employment transitions is defined at the level of individual agents rather than Census tracts. This enables the authors to calibrate a subset of employment transition parameters from retrospective Current Population Survey (CPS) data. Further, the network structure is enriched by allowing for a small number of long "bridging" ties connecting artificial agents in the model that are physically distant from each other. This makes the network structure more realistic, since the sociological literature cited above shows that while many network connections are local in a geographic sense, a sizeable fraction of links occurs between locations that are geographically far from each other. Finally, the value of information received about job openings is allowed to vary depending on whether the information is received from members of one's own ethnic group or from members of other groups.

Formally, the transition probability into unemployment is assumed to only depend on agents' characteristics, race/ethnicity and education:

$$\Pr(y_{i,t+1} = 0 | y_{i,t} = 1; A_i, H_i, W_i, X_i) = \Lambda \left[(\alpha_{1A} + \alpha_{2A} X_i) A_i + (\alpha_{1H} + \alpha_{2H} X_i) H_i + (\alpha_{1W} + \alpha_{2W} X_i) W_i \right]$$

where A, H, W denote African-Americans, Hispanics, and Whites, respectively and $\Lambda(\cdot) = \exp(\cdot)/(1+\exp(\cdot))$. In contrast, the probability that an unemployed agent finds a job depends both on own characteristics and on information flows concerning job opportunities that she receives from her currently employed social contacts at time t. The paper takes the extreme modeling stand of allowing transitions out of unemployment to be affected by one's network contacts N_i , whereas transitions out of employment are affected by one's personal characteristics alone. This is done in order to calibrate the parameters of the latter transition probabilities with CPS data.

Information received by agent *i* is assumed to be a function of the number of employed individuals in her set of neighbors. The authors distinguish between the number of employed individuals of an individual's own race/ethnicity from those of the other two groups using the notation $I_{i,t}^{Own}$ and $I_{i,t}^{Other}$. This allows them to investigate the possibility that information flow may depend on race/ethnicity. The definitions of $I_{i,t}^{Own}$ and $I_{i,t}^{Other}$ when agent *i* is African American are:

$$I_{i,t}^{Own} \equiv \sum_{k \in N_i} y_{k,t} \times A_k \text{ and } I_{i,t}^{Other} \equiv \sum_{k \in N_i} y_{k,t} \times (1 - A_k).$$

The values of $I_{i,t}^{Own}$ and $I_{i,t}^{Other}$ are analogously defined for members of the remaining two racial/ethnic partitions. The transition probabilities into employment for African Americans are defined as:

$$\Pr(y_{i,t+1} = 1 | y_{i,t} = 0; A_i = 1, X_i, I_{i,t}^{Own}, I_{i,t}^{Other}) = \Lambda \left[\beta_{1A} + \beta_{2A}X_i + \phi_{2A}^{Own} I_{i,t}^{Own} + \phi_{2A}^{Other} I_{i,t}^{Other}\right]$$

The richer network structure poses an interesting estimation problem: the existence of long ties implies that cross-sectional data will potentially exhibit strong dependence, with measures such as spatial correlations or mixing coefficients decaying only very slowly as physical distance increases. This is in contrast to models with only nearest-neighbor interactions, which give rise to weak cross-sectional dependence. Therefore, even large cross-sections should be essentially viewed as a single observation from a vector time series process. Conley and Topa (2007) then propose a minimum-distance estimator to obtain point estimates, and a test-statistic inversion method to obtain interval estimates using the minimum distance criterion function as the test statistic.

Thanks to the richer model structure, the parameter estimates can be used to evaluate how well unemployment spell distributions simulated from the model match the empirical ones from the CPS data. The authors find that the model generates too many long unemployment spells (at the estimated parameter values) relative to the data. The authors further present descriptive methods to illustrate model properties by simulating impulse response functions, in time and in space, to localized unemployment shocks that hit certain neighborhoods in the Los Angeles metropolitan area. They find that, at the stationary distribution, negative employment shocks take a long time to be fully absorbed (more than two years), but travel relatively little in space.

Finally, before turning to the literature on social network effects, we wish to mention the work of Bayer et al. (2007) that provides a framework for analyzing the extent and impact of sorting into neighborhoods on the basis of their socio-economic composition and school quality. Their basic model is a rich discrete-choice model of household location decisions across residential neighborhoods, where household preferences are defined over housing and neighborhood characteristics. This model nests hedonic price regressions as well as traditional discrete-choice models.

The paper addresses the endogeneity of school and neighborhood attributes by embedding a Boundary Discontinuity Design (BDD) into the model.¹² The idea is to use the geographic boundaries of school catchment areas to compare characteristics of households residing on opposite sides of a given boundary. Assuming that the underlying distribution of unobserved attributes affecting location choices is continuous, any observed discontinuity at the boundary in, say, household education or income enables the researcher to estimate the value of school quality.

The BDD is also used to identify and estimate the full distribution of household prefer-

¹²This approach builds on the earlier work by Black (1999), and is a special case of the general Regression Discontinuity Design developed by Hahn et al. (2001).

ences over schools and neighbors. Household sorting across boundaries generates variation in neighborhood attributes that is related to an observable variable–namely, schools. Therefore, by controlling for differences in school quality on either side of the boundary, one can estimate the value to households of such neighborhood attributes. Thus, by embedding the BDD into a full sorting model, the paper delivers a strategy to estimate household preferences for housing and neighborhood attributes. This approach can be potentially very useful to jointly model sorting and social interaction effects, allowing the researcher to separately identify both channels.

3 Network effects

We have seen the importance of neighborhood effects on different outcomes (crime, labor, etc.), both using natural experiments and a structural approach. We would like now to look at the network effects on different outcomes. Here the network will be modeled as a graph where nodes will be agents (workers, consumers, firms, etc.) and links will represent friendship relationships, R&D alliances, criminal interactions, etc.¹³

3.1 Network theory

We would like to develop some network theory that will be useful for the empirical estimation of network effects. There is by now a growing network literature in economics where researchers have been looking at both *network formation* and *games on networks*, i.e. games in efforts for which the network is fixed. Here we will mainly expose the main results of games on networks, that is when the network is taken as given, since there are no clear-cut results in the network formation literature. We will, however, get back to network formation when we deal with the estimation of peer and network effects in economics.

Although there are many forms that games on networks can take, there are two prominent and broadly encompassing classes of games.¹⁴ The distinction between these types of games relates to whether a given player's relative payoff to taking an action versus not is *increasing* or *decreasing* in the set of neighbors who take the action. The first class of games on networks, of which coordination games are the canonical example, are games of *strategic*

¹³For overviews of the literature on the economics of networks, see, in particular, the surveys by Jackson (2003, 2004, 2005, 2011), Ioannides and Datcher-Loury (2004), De Martí Beltran and Zenou (2011), Zenou (2014), Jackson and Zenou (2014), Jackson et al. (2014), as well as the books by Vega-Redondo (2007), Goyal (2007), Jackson (2008), Benhabib et al. (2011), and Jackson and Zenou (2013).

¹⁴For a complete overview on the literature on games on networks, see Jackson and Zenou (2014).

complements. In games of strategic complements, an increase in the actions of other players leads a given player's higher actions to have relatively higher payoffs compared to that player's lower actions. Examples of such games include things like the adoption of a technology, search in the labor market, R&D efforts, human capital decisions, criminal efforts, smoking behaviors, etc. Games of *strategic substitutes* are such that the opposite is true: an increase in other players' actions leads to relatively lower payoffs to higher actions of a given player. Applications of strategic substitutes include, for example, local public good provision and information gathering.

We will here mainly expose games with strategic complements since their empirical applications are the most important in economics.¹⁵ There are two distinct models. In the first one, the *local-aggregate model*, it is the sum of active links that matters. In the second one, the *local-average model*, it is the average sum of active links that matters.

3.1.1 The local-aggregate model

Following Calvó-Armengol and Zenou (2004) and Ballester et al. (2006, 2010), we would like to examine a simple model that can encompass any social network. For that, consider a game where $N_r = \{1, \ldots, n_r\}$ is a finite set of agents in network \mathbf{g}_r $(r = 1, \ldots, \overline{r})$, where \overline{r} is the total number of networks.¹⁶ We represent these social connections by a graph \mathbf{g}_r , where $g_{ij,r} = 1$ if agent *i* is connected to agent *j* and $g_{ij,r} = 0$ otherwise. Links are taken to be reciprocal, so that $g_{ij,r} = g_{ji,r}$.¹⁷ By convention, $g_{ii,r} = 0$. We denote by \mathbf{G}_r the $n_r \times n_r$ adjacency matrix with entry $g_{ij,r}$, which keeps track of all direct connections. For example, if we consider criminal activities, then agents *i* and *j* share their knowledge about delinquent activities if and only if $g_{ij,r} = 1$. For the labor market, a link will indicate the exchange of job information between the individuals. Each agent *i* decides how much effort to exert in some activity, denoted $y_{i,r} \in \mathbb{R}_+$. This could be crime, education, labor search, R&D activities, etc. The utility of each agent *i* providing effort $y_{i,r}$ in network \mathbf{g}_r is given by:

$$u_{i,r}(\mathbf{y}_r, \mathbf{g}_r) = (a_{i,r} + \eta_r + \varepsilon_{i,r}) y_{i,r} - \frac{1}{2} y_{i,r}^2 + \phi_1 \sum_{j=1}^{n_r} g_{ij,r} y_{i,r} y_{j,r}$$
(1)

 $^{^{15}}$ We refer to Allouch (2012), Bramoullé and Kranton (2007), Bramoullé et al. (2014) and Jackson and Zenou (2014) for an exposition of the games on networks with strategic substitutes.

¹⁶Even though we consider only one network in the theoretical analysis, we keep the subscript r because it facilitates the transition to the econometric analysis.

¹⁷This is only for the sake of the exposition. All the results go through with a directed and weighted network.

where $\phi_1 > 0$ and \mathbf{y}_r is an n_r -dimensional vector of efforts. This utility has two parts. An individual part, $(a_{i,r} + \eta_r + \varepsilon_{i,r}) y_{i,r} - \frac{1}{2} y_{i,r}^2$ where the marginal benefits of providing effort $y_{i,r}$ are given by $(a_{i,r} + \eta_r + \varepsilon_{i,r}) y_{i,r}$ and are increasing in own effort $y_{i,r}$. $a_{i,r}$ denotes the exogenous heterogeneity of agent *i* that captures the observable characteristics of individual *i* (e.g. sex, race, age, parental education) and the observable average characteristics of individual *i*'s best friends, i.e. average level of parental education of *i*'s friends, etc. (contextual effects). To be more precise, $a_{i,r}$ can be written as:

$$a_{i,r} = \sum_{m=1}^{M} \beta_m x_{i,r}^m + \frac{1}{g_{i,r}} \sum_{m=1}^{M} \sum_{j=1}^{n_r} g_{ij,r} x_{j,r}^m \gamma_m$$
(2)

where $g_{i,r} = \sum_{j=1}^{n_r} g_{ij,r}$ is the number of direct links of individual i, x_i^m is a set of M variables accounting for observable differences in individual characteristics of individual i, and β_m, γ_m are parameters. In the utility function, η_r denotes the unobservable network characteristics, e.g., the prosperous level of the neighborhood/network \mathbf{g}_r and $\varepsilon_{i,r}$ is an error term, which captures other uncertainty in the proceeds from effort. Both η_r and $\varepsilon_{i,r}$ are observed by the agents (when choosing effort level) but not by the econometrician.

The second part of the utility function, $\phi_1 \sum_{j=1}^{n_r} g_{ij,r} y_{j,r}$, corresponds to the localaggregate effect since each agent *i* is affected by the sum of efforts of the agents for which she has a direct connection. The higher the number of active connections, the higher the marginal utility of providing her own effort. This is a game with strategic complementarities since

$$\frac{\partial^2 u_{i,r}(\mathbf{y}_r, \mathbf{g}_r)}{\partial y_{i,r} \partial y_{j,r}} = \phi_1 g_{ij,r} \ge 0$$

At equilibrium, each agent maximizes her utility (1) and the best-reply function, for each i = 1, ..., n, is given by:

$$y_{i,r} = \phi_1 \sum_{j=1}^{n_r} g_{ij,r} y_{j,r} + a_{i,r} + \eta_r + \varepsilon_{i,r}$$
(3)

Denote by $\mu_1(\mathbf{g}_r)$ the largest eigenvalue of network \mathbf{g}_r and by $\alpha_{i,r} \equiv a_{i,r} + \eta_r + \varepsilon_{i,r}$, with the corresponding non-negative n_r -dimensional vector $\boldsymbol{\alpha}_r$. It can be shown that, if $\phi_1 \mu_1(\mathbf{g}_r) < 1$, the peer effect game with payoffs (1) has a unique Nash equilibrium in pure strategies given by:

$$\mathbf{y}_r^* \equiv \mathbf{y}_r^*(\mathbf{g}_r) = \mathbf{b}_{\boldsymbol{\alpha}_r}(\mathbf{g}_r, \phi_1). \tag{4}$$

where $\mathbf{b}_{\alpha_r}(\mathbf{g}_r, \phi_1)$ is the weighted Katz-Bonacich centrality, a well-known measure defined

by Katz (1953) and Bonacich (1987). Formally,

$$\mathbf{b}_{\boldsymbol{\alpha}_r}(\mathbf{g}_r, \phi_1) = \left(\mathbf{I}_{n_r} - \phi_1 \mathbf{G}_r\right)^{-1} \boldsymbol{\alpha}_r = \sum_{p=0}^{\infty} \phi_1^k \mathbf{G}_r^k \boldsymbol{\alpha}_r$$
(5)

where \mathbf{I}_{n_r} is the $(n_r \times n_r)$ identity matrix, $\boldsymbol{\alpha}_r = \mathbf{a}_r + \eta_r \mathbf{1}_{n_r} + \boldsymbol{\varepsilon}_{i,r}$ and $\mathbf{1}_{n_r}$ is an n_r -dimensional vector of ones. In words, the Katz-Bonacich centrality of agent *i* counts the total number of paths (not just shortest paths) in \mathbf{g}_r starting from *i*, weighted by a decay factor that decreases with the length of these paths. This is captured by the fact that the matrix \mathbf{G}_r^k keeps track of the indirect connections in the network, i.e. $g_{ij,r}^{[k]} \geq 0$ measures the number of paths of length $p \geq 1$ in \mathbf{g}_r from *i* to *j*. This result shows that more central agents in the network will exert more effort. This is intuitively related to the equilibrium behavior, as the paths capture all possible feedbacks. In our case, the decay factor depends on how the effort of others enters into own effort's payoff. It is then straightforward to show that, for each individual *i*, the equilibrium utility is:

$$u_{i,r}(\mathbf{y}_r^*, \mathbf{g}_r) = \frac{1}{2} \left[b_{\alpha_{i,r}}(\mathbf{g}_r, \phi_1) \right]^2$$

so that the equilibrium utility of each criminal is proportional to her Katz-Bonacich centrality.

It is important to understand that there are magnifying or social multiplying effects due to network relationships, which are captured by the Katz-Bonacich centrality. To understand this last point, consider the case of a dyad for which $n_r = 2$ and, for simplicity, assume that $\alpha_{1,r} = \alpha_{2,r} = \alpha_r$. If there were no interactions, i.e., $g_{12,r} = g_{21,r} = 0$, then the unique Nash equilibrium would be: $y_{1,r}^* = y_{2,r}^* = \alpha_r$. With social interactions, (i.e. $g_{12,r} = g_{21,r} = 1$), if $\phi_1 < 1$, the unique Nash equilibrium is given by:

$$y_{1,r}^* = y_{2,r}^* = \frac{\alpha_r}{1 - \phi_1}.$$
(6)

In the dyad, complementarities lead to an effort level above the equilibrium value for an isolated player. The factor $1/(1 - \phi_1) > 1$ is often referred to as a *social multiplier*. An important part of the empirics of network effects would be to estimate ϕ_1 . If, for example, the estimated value of ϕ_1 is 0.5, then the social multiplier is equal to 2. Take the example of crime. This means that, if a criminal would exert crime alone, then she will commit α_r crimes and this will only be determined by her observable characteristics. Now, if this criminal has only one criminal friend, compared to the case where she operates alone, she will increase her crime effort by 100%, i.e. will commit $2\alpha_r$ crimes. This is not due to her characteristics but only to the fact that she interacts with another criminal.

3.1.2 The local-average model

Following Patacchini and Zenou (2012b), let us now develop the *local-average* model where the *average effort level* of direct links affects utility. For that, let us denote the set of individual i's direct connections as:

$$N_{i,r}(g_r) = \{ j \neq i \mid g_{ij,r} = 1 \}$$

which is of size $g_{i,r}$. Let $g_{ij,r}^* = g_{ij,r}/g_{i,r}$, for $i \neq j$, and set $g_{ii,r}^* = 0$. By construction, $0 \leq g_{ij,r}^* \leq 1$. Note that \mathbf{g}_r^* is a row-normalization of the initial network \mathbf{g}_r , as illustrated in the following example, where \mathbf{G}_r and \mathbf{G}_r^* are the adjacency matrices of, respectively, \mathbf{g}_r and \mathbf{g}_r^* .

Example 1: Consider the following network \mathbf{g}_r :

Figure 1

Then,

$$\mathbf{G}_{r} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad \text{and} \quad \mathbf{G}_{r}^{*} = \begin{bmatrix} 0 & 1/2 & 1/2 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

As above, $y_{i,r}$ denotes the effort level of individual *i* in network *r*. Denote by $\overline{y}_{i,r}$ the average effort of individual *i*'s best friends. It is given by:

$$\overline{y}_{i,r} = \frac{1}{g_{i,r}} \sum_{j=1}^{n_r} g_{ij,r} y_{j,r} = \sum_{j=1}^{n_r} g_{ij,r}^* y_{j,r}$$
(7)

Each individual *i* selects an effort $y_{i,r} \ge 0$ and obtains a payoff given by the following utility function:

$$u_{i,r}(\mathbf{y}_r, \mathbf{g}_r) = \left(a_{i,r}^* + \eta_r^* + \varepsilon_{i,r}^*\right) \, y_{i,r} - \frac{1}{2}y_{i,r}^2 - \frac{\lambda_2}{2} \, (y_{i,r} - \overline{y}_{i,r})^2 \tag{8}$$

with $\lambda > 0$. All the parameters have the same interpretation as in (1). Let us now interpret the peer-effect part of this utility function since it is the only aspect that differ from (1). Indeed, the last term $\frac{\lambda_2}{2}(y_{i,r} - \overline{y}_{i,r})^2$ reflects the influence of friends' behavior on own action. It is such that each individual wants to minimize the *social distance* between herself and her reference group, where λ_2 is the parameter describing the *taste for conformity*. Here, the individual loses utility $\frac{\lambda_2}{2}(y_{i,r} - \overline{y}_{i,r})^2$ from failing to conform to others. This is the standard way economists have been modelling conformity (see, among others, Akerlof, 1997; Bernheim, 1994; Kandel and Lazear, 1992; Fershtman and Weiss, 1998; Glaeser and Scheinkman, 2001).

Observe that beyond the idiosyncratic heterogeneity, $a_{i,r}^*$, there is a second type of heterogeneity, referred to as peer heterogeneity, which captures the differences between individuals due to network effects. Here it means that individuals have different types of friends and thus different reference groups $\overline{y}_{i,r}$. As a result, the social norm each individual *i* faces is endogenous and depends on her location in the network as well as the structure of the network. Indeed, in a star-shaped network (as the one described in Figure 1) where each individual is at most distance 2 from each other, the value of the social norm will be very different than a circle network, where the distance between individuals can be very large.

We now characterize the Nash equilibrium of the game where agents choose their effort level $y_{i,r} \ge 0$ simultaneously. When $\phi_2 < 1$, the peer effect game with payoffs (8) has a unique interior Nash equilibrium in pure strategies for each $i = 1, ..., n_r$ given by:

$$y_{i,r} = \phi_2 \sum_{j=1}^{n_r} g_{ij,r}^* y_{j,r} + a_{i,r} + \eta_r + \varepsilon_{i,r}$$
(9)

where $\phi_2 \equiv \lambda_2/(1+\lambda_2)$, $a_{i,r} \equiv a_{i,r}^*/(1+\lambda_2)$, $\eta_r^* \equiv \eta_r^*/(1+\lambda_2)$ and $\varepsilon_{i,r} \equiv \varepsilon_{i,r}^*/(1+\lambda_2)$. In matrix form, (9) can be written as:

$$\mathbf{y}_r = \left(\mathbf{I}_{n_r} - \phi_2 \mathbf{G}_r^*\right)^{-1} \boldsymbol{\alpha}_r \tag{10}$$

3.1.3 Local aggregate or local average? Theoretical considerations

In the local aggregate model, it is the sum of the efforts of her peers that affects the utility of individual i. So the more individual i has active (i.e. providing effort) friends, the higher is her utility. On the contrary, in the local-average model, it is the deviation from the average of efforts of her peers that affects the utility of individual i. So the closer is i's effort to the average of her friends' efforts, the higher is her utility.

Consequently, the two models are quite different from an economic viewpoint, even though, from a purely technical point of view, they are not that different (compare the best-reply functions (3) and (9)). In particular, the adjacency matrix \mathbf{G}_r of direct links of the network totally characterizes the peer effects in the *local aggregate* model whereas it is a transformation of this matrix \mathbf{G}_r to a weighted stochastic matrix \mathbf{G}_r^* that characterizes the peer effects in the *local-average* model. This means that, in equilibrium, in the former model, individuals are positively affected by the sum of their friends' effort (non row-normalized \mathbf{G}_r) while, in the latter, they are positively affected by the average effort of their friends (row-normalized \mathbf{G}_r). From an economic viewpoint, in the *local-aggregate* model, even if individuals were ex ante identical (in terms of $a_{i,r}$ and $\varepsilon_{i,r}$), different positions in the network would imply different effort levels, because it is the sum of efforts that matter. This would not be true in the *local-average* model since, in that case, the position in the network would not matter since it is the deviation from the average effort of friends that affects the utility.

3.2 Empirical aspects of social networks: Structural approach

We would like now to use the previous models of Section 3.1 to estimate the empirical effects of networks. We will first start with the econometric issues and then state some empirical results, especially those relevant for policy issues.

3.2.1 Linear-in-means model: The reflection problem

In the standard *linear-in-means model*, each agent is affected by the average action of her reference group. This is the standard *peer-effect* model (see Section 2) where the reference group is the same for all individuals. For example, in crime, the criminal activity of individual *i* will depend on the average criminal activity of the neighborhood where she lives. As a result, the right-hand side of this equation will be same for all individuals living in the same neighborhood (typically a census tract in the United States). In education, this would mean that the grades of each student *i* will be determined by the average grades in the school or in the classroom where *i* belongs to. Implicitly, when talking about neighborhood effects, it is assumed that each delinquent interacts in the same way with everybody in her neighborhood (if we think of a census tract then, on average, this would mean that i interacts with 4,000 persons). Similar assumptions have to be made for the classroom or school example. On the contrary, in a network approach where the dyad is the unit of interest, one assumes that each individual interacts with only her direct friends. As we have seen in (4), she is also influenced by indirect links but she puts a lower weight on them. In (4), we showed that the weight is proportional to the distance in the network as captured by the Katz-Bonacich centrality of each individual. If an individual is 5 links away from i, then the weight is ϕ_1^5 , which is small given than ϕ_1 is less than 1.

Let us return to the linear-in-means model. From an econometric viewpoint, the simultaneity in behavior of interacting agents (i.e. the endogenous action of each agent is affected by the average endogenous action of the reference group) introduces a perfect collinearity between the expected mean outcome of the group and its mean characteristics. Therefore, it is difficult to differentiate between the effect of peers' choice of effort and peers' characteristics that do impact on their effort choice (the so-called *reflection problem*; Manski, 1993). Basically, the reflection problem arises because, in the standard approach, individuals interact in groups, that is individuals are affected by all individuals belonging to their group and by nobody outside the group. In other words, groups do not overlap. Let us explain formally the reflection problem in the linear-in-means model.

The reflection problem (Manski, 1993) arises when it is not possible to disentangle the endogenous effects from the contextual effects. The basic linear-in-means model can be written as:

$$y_{i,r} = \phi_2 \mathbb{E}(y_r) + \gamma \mathbb{E}(x_r) + \beta x_{i,r} + \varepsilon_{i,r}$$
(11)

where, as above, $y_{i,r}$ is the effort or outcome (e.g. education, crime, etc.) of individual *i* belonging to group r, $x_{i,r}$ is an observable characteristic of individual *i*'s (i.e. *i*'s characteristics such as his/her gender, age, education, etc.)¹⁸ in group r, $\mathbb{E}(y_r)$ denotes the average of the efforts/outcomes in the peer group r of individual i, $\mathbb{E}(x_r)$ denotes the average of the characteristics (or characteristics specific to group r) in the peer group r of individual i and $\varepsilon_{i,r}$ is an error term. We want to identify $\phi_2 > 0$, i.e. the endogenous peer effect and separate them from $\gamma > 0$, the exogenous contextual effect. Observe that, contrary to (1) or (8), r refers to a group (i.e. neighborhood, school, classroom, etc.) and not to a network. Assume $\mathbb{E}(\varepsilon_{i,r}|y_r, x_r) = 0$. If we take the average over peer group r of equation (11) and solve this equation, we obtain:

$$\mathbb{E}(y_r) = \left(\frac{\gamma + \beta}{1 - \phi_2}\right) \mathbb{E}(x_r)$$

Plugging the value of $\mathbb{E}(y_r)$ in (11) yields:

$$y_{i,r} = \left[\frac{\phi_2\left(\gamma + \beta\right) + \gamma\left(1 - \phi_2\right)}{\left(1 - \phi_2\right)}\right] \mathbb{E}(x_r) + \beta x_{i,r} + \varepsilon_{i,r}$$

If one estimates this equation, there is an identification problem since ϕ_2 (endogenous peer effects) and γ (exogenous contextual effects) cannot be separately identified. There are three estimated coefficients and four structural parameters and thus identification fails. This is the *reflection problem* (Manski, 1993).

In terms of policy implications of peer effects, it is of paramount importance to *separately* identify peer or endogenous effects from contextual or exogenous effects (Manski, 1993, 2000; Moffitt, 2001) because endogenous effects generate a *social multiplier* while contextual effect

¹⁸For the sake of the presentation, we consider only one characteristic of *i* and not the sum of characteristics $\sum_{j=1}^{n_r} x_{j,r}^m$ as in (2). The extension to more than one characteristics is straightforward.

don't. Consider, for example, peer effects in crime. A special program targeting some individuals will have multiplier effects: the individual affected by the program will reduce her criminal activities and will influence the criminal activities of her peers, which, in turn, will affect the criminal activities of their peers, and so on. On the contrary, any policy affecting contextual effects will have no social multiplier effects (for example, improving the gender composition of students at school).

Let us show now that, in the case of social networks, the reflection problem nearly never arises because the reference group is the set of network contacts each individual has. Following Bramoullé et al. (2009), let us show how using a network approach, we can solve the reflection problem. We will also show how it can help solve the problem of endogenous network formation and, more generally, correlated effects.

3.2.2 Social networks: The local-average model

So far the reference group was the same for all individuals (the neighborhood, the classroom, etc.) since peer effects are an average intra-group externality that affects identically all the members of a given group. In particular, the group boundaries are arbitrary and at a fairly aggregate level. On the contrary, social networks use the smallest unit of analysis for cross influences: the dyad (two-person group). In that case, the reference group of individual i is her direct links (for example, friends). Furthermore, the reference group of individual j, who is a best friend of i, is not the same as i because individual j may have some best friends that are not i's best friends. As a result, equation (11) can now be written as:

$$y_{i,r_i} = \phi_2 \mathbb{E}(y_{r_i}) + \gamma \mathbb{E}(x_{r_i}) + \beta x_{i,r_i} + \varepsilon_{i,r_i}$$
(12)

where r_i is now the reference group of individual i (see (7)) so that $y_{i,r_i} \equiv y_{i,r}$ and $\mathbb{E}(y_{r_i}) \equiv \overline{y}_{i,r}$ where $\overline{y}_{i,r}$ is defined by (7). Similarly, if we consider more than one characteristics for individual i, then, using (2), we have: $\gamma \mathbb{E}(x_{r_i}) + \beta x_{i,r_i} \equiv a_{i,r}$. As a result, adding the network fixed effect η_r , equation (12) is exactly equivalent to (9), which corresponds to the unique Nash equilibrium of the *local-average model* where the utility function is given by (8).

Let us write (12) or (9) in matrix form (with network fixed effect). We have:

$$\mathbf{Y}_r = \phi_2 \mathbf{G}_r^* \mathbf{Y}_r + \beta \mathbf{X}_r + \gamma \mathbf{G}_r^* \mathbf{X}_r + \eta_r \mathbf{l}_{n_r} + \boldsymbol{\varepsilon}_r,$$
(13)

where \bar{r} is the total number of networks in the sample, n_r the number of individuals in the rth network, $n = \sum_{r=1}^{\bar{r}} n_r$ total number of sample observations, \mathbf{Y}_r is a $n \times 1$ vector of observations on the dependent (decision) variable, \mathbf{G}_r^* is the $n \times n$ row normalized matrix of \mathbf{G}_r , \mathbf{X}_r is a $n \times 1$ vector of observations on the exogenous variables, \mathbf{l}_{n_r} is an n_r -dimensional vector of 1, $\varepsilon_{i,r}$'s are i.i.d. innovations with zero mean and variance σ^2 for all *i* and *r*. Assume $E[\boldsymbol{\epsilon}|\mathbf{G}_r, \mathbf{X}_r] = 0$. Then (13) is similar to a spatial autoregressive (SAR) model (Anselin, 1988).

The network-specific parameters η_r is allowed to depend on \mathbf{G}_r , \mathbf{G}_r^* and \mathbf{X}_r as in a fixed effect panel data model. To avoid the incidental parameter problem when the number of groups \bar{r} is large, we eliminate the term $\eta_r \mathbf{l}_{n_r}$ using the deviation from group mean projector $\mathbf{J}_r = \mathbf{I}_{n_r} - \frac{1}{n_r} \mathbf{l}_{n_r} \mathbf{l}_{n_r}^{\mathrm{T}}$. This transformation is analogous to the *within* transformation for a fixed effect panel data model. As $\mathbf{J}_r \mathbf{l}_{n_r} = 0$, the transformed network model is

$$\mathbf{J}_r \mathbf{Y}_r = \phi_2 \mathbf{J}_r \mathbf{G}_r^* \mathbf{Y}_r + \beta \mathbf{J}_r \mathbf{X}_r + \gamma \mathbf{J}_r \mathbf{G}_r^* \mathbf{X}_r + \mathbf{J}_r \boldsymbol{\varepsilon}_r$$
(14)

If $\phi_2\beta + \gamma \neq 0$, Bramoullé et al. (2009) demonstrates that identification of the local-average model is possible since $[\mathbf{J}_r \mathbf{G}_r^{*2} \mathbf{X}_r, \mathbf{J}_r \mathbf{G}_r^{*3} \mathbf{X}_r, \cdots]$ can be used as IVs for the endogenous effect. Note, in a natural network, if individuals i, j are friends and j, k are friends, it does not necessarily imply that i, k are also friends. The *intransitivity in social connections* provides an exclusion restriction such that the characteristics of the friends' friends $\mathbf{G}_r^{*2} \mathbf{X}_r$ may not be perfectly correlated with own characteristics \mathbf{X}_r and the characteristics of the friends $\mathbf{G}_r^* \mathbf{X}_r$. Thus, one can use IVs like $\mathbf{J}_r \mathbf{G}_r^{*2} \mathbf{X}_r$ to identify endogenous and contextual effects. Based on this important observation, Bramoullé et al. (2009) have shown that if the matrices $\mathbf{I}_{n_r}, \mathbf{G}_r^*, \mathbf{G}_r^{*2}$ are linearly independent, social effects are identified. Thus, the natural exclusion restrictions induced by the network structure (existence of an intransitive triad) guarantee identification of the model.¹⁹

Although this setting allows us to solve the reflection problem, the estimation results might still be flawed because of the presence of unobservable factors affecting both individual and peer behavior. It is thus difficult to disentangle the *endogenous peer effects* from the *correlated effects*, i.e. from effects arising from the fact that individuals in the same group tend to behave similarly because they face a common environment. If individuals are not randomly assigned into groups, this problem might originate from the possible sorting of agents. If the variables that drive this process of selection are not fully observable, potential correlations between (unobserved) group-specific factors and the target regressors are major sources of bias. In our case, two types of possibly correlated effects arise, i.e. at the network level and at the peer group level.

¹⁹Cohen-Cole (2006) and Lee (2007) present a similar argument, i.e. the use of out-group effects, to achieve the identification of the endogenous group effect in the linear-in-means model.

The use of *network fixed effects* proves useful in this respect. Assume, indeed, that agents self-select into different networks in a first step, and that link formation takes place within networks in a second step. Then, as Bramoullé et al. (2009) observe, if linking decisions are uncorrelated with the observable variables, this two-step model of link formation generates network fixed effects. Assuming additively separable network heterogeneity, a within group specification is able to control for these correlated effects. Indeed, by subtracting from the individual-level variables the network average, social effects can be identified and one can disentangle endogenous effects from correlated effects.

Bramoullé et al. (2009) also deal with this problem in the context of networks. They show that if the matrices \mathbf{I}_{n_r} , \mathbf{G}_r , \mathbf{G}_r^2 and \mathbf{G}_r^3 are linearly independent, then by subtracting from the variables the network component average (or the average over neighbors, i.e. direct friends) social effects are again identified and one can disentangle endogenous effects from correlated effects. The condition is more demanding because some information has been used to deal with the fixed effects.²⁰

A number of papers using network data have used this strategy to deal with the identification and estimation of peer effects of (13) with correlated effects (e.g., Lee 2007; Bramoullé et al., 2009; Liu and Lee, 2010, Calvó-Armengol et al., 2009; Lin, 2010; Lee et al., 2010; Patacchini and Zenou, 2012b; Liu et al., 2012; Boucher et al., 2014). As stated above, these papers exploit the architecture of network contacts to construct valid instrumental variables (IVs) for the endogenous effect (i.e. the characteristics of indirect friends) and to use network fixed effect as a remedy for the selection bias that originates from the possible sorting of individuals with similar unobserved characteristics into a network. The underlying assumption is that such unobserved characteristics are common to the individuals within each network.

3.2.3 Social networks: The local-aggregate model

We have seen, so far, that the local-average model is well identified under some conditions on the adjacency matrix. Most researchers have used this model to estimate peer or network effects. However, in some cases, the local-aggregate model seems also to be a natural outcome of a game. In that case, do the identification conditions proposed by Bramoullé et al. (2009) still apply? Liu et al. (2012) show that it is not the case.

If we now consider the local-aggregate model of Section 3.1.1, then the matrix equivalent of the best-reply functions (3) in the theoretical model is equal to:

$$\mathbf{Y}_{r} = \phi_{1} \mathbf{G}_{r} \mathbf{Y}_{r} + \beta \mathbf{X}_{r} + \gamma \mathbf{G}_{r}^{*} \mathbf{X}_{r} + \eta_{r} \mathbf{l}_{n_{r}} + \boldsymbol{\varepsilon}_{r}, \qquad (15)$$

 $^{^{20}}$ See Blume et al. (2011) for an overview on these econometric issues.

where the only difference with the local-average model is that, for the endogenous effect, \mathbf{G}_r is not row normalized.

Liu et al. (2012) demonstrate that the identification conditions for the *local-aggregate* model are weaker than those for the *local-average* model because one can use the sum of rows from the adjacency matrix as additional instruments in the local-aggregate model while this is not possible in the local-average model since it is always equal to 1. To be more precise, Liu et al. (2012) show that, when \mathbf{G}_r has non-constant row sums for some network r, then if $\mathbf{I}_{n_r}, \mathbf{G}_r, \mathbf{G}_r^*, \mathbf{G}_r \mathbf{G}_r^*$ are linearly independent and $|\beta| + |\gamma| + |\eta_r| \neq 0$, the model is identified.²¹

Figure 2 gives an example where identification is possible for the local-aggregate model but fails for the local-average model. Consider a dataset where each network is represented by the graph in Figure 2 (a star-shaped network). For the row-normalized adjacency matrix \mathbf{G}_{s}^{*} , it is easy to see that $\mathbf{G}_{s}^{*3} = \mathbf{G}_{s}^{*}$. Therefore, it follows from Bramoullé et al. (2009) that the local-average model (13) is not identified. On the other hand, as \mathbf{G}_{r} in Figure 2 has *non-constant row sums* and $\mathbf{I}_{n_{r}}, \mathbf{G}_{r}, \mathbf{G}_{r}^{*}, \mathbf{G}_{r}\mathbf{G}_{r}^{*}$ are linearly independent, it follows that the local-aggregate model (15) can be identified for this network.

Figure 2: An example where the local-aggregate model can be identified but not the local-average model

3.2.4 Testing the local-average model against the local-aggregate model

Liu et al. (2014) propose a test to evaluate whether local-average model is more relevant in some activities than the local-aggregate model and vice versa. For that, they first develop a theoretical model by considering the following utility function:

$$u_{i,r}(\mathbf{y}_{r}, \mathbf{g}_{r}) = \underbrace{\left(\alpha_{i,r}^{*} + \lambda_{1} \sum_{j=1}^{n_{r}} g_{ij,r} y_{j,r}\right) y_{i,r}}_{\text{benefit}} - \underbrace{\frac{1}{2} [y_{i,r}^{2} + \lambda_{2} (y_{i,r} - \sum_{j=1}^{n_{r}} g_{ij,r}^{*} y_{j,r})^{2}]}_{\text{cost}},$$
(16)

²¹They also have some conditions for identification when \mathbf{G}_r has constant row sums.

This is the so-called *hybrid model* because it includes both local-aggregate and local-average aspects of preferences. The best-reply function of each individual i is given by:

$$y_{i,r} = \phi_1 \sum_{j=1}^{n_r} g_{ij,r} y_{j,r} + \phi_2 \sum_{j=1}^{n_r} g_{ij,r}^* y_{j,r} + \alpha_{i,r}$$
(17)

where $\alpha_{i,r} \equiv \alpha_{i,r}^* / (1 + \lambda_2)$, $\phi_1 \equiv \lambda_1 / (1 + \lambda_2)$ and $\phi_2 \equiv \lambda_2 / (1 + \lambda_2)$. It is easily verified that, when $\lambda_1 = 0$, we are back to the local-average model (see (3)) while, when $\lambda_2 = 0$, we are back to the local-aggregate model (see (9)).

Denote by g_r^{\max} the highest degree in network r, i.e. $g_r^{\max} = \max_i g_{i,r}$. If $\phi_1 \ge 0$, $\phi_2 \ge 0$ and $g_r^{\max}\phi_1 + \phi_2 < 1$, then the network game with payoffs (16) has a unique interior Nash equilibrium in pure strategies given by

$$\mathbf{Y}_{r} = \left(\mathbf{I}_{n_{r}} - \phi_{1}\mathbf{G}_{r} - \phi_{2}\mathbf{G}_{r}^{*}\right)^{-1}\boldsymbol{\alpha}_{r}$$
(18)

In terms of econometrics, with network fixed effects, (17) can be written in matrix form as:

$$\mathbf{Y}_{r} = \phi_{1} \mathbf{G}_{r} \mathbf{Y}_{r} + \phi_{2} \mathbf{G}_{r}^{*} \mathbf{Y}_{r} + \beta \mathbf{X}_{r} + \gamma \mathbf{G}_{r}^{*} \mathbf{X}_{r} + \eta_{r} \mathbf{l}_{n_{r}} + \boldsymbol{\varepsilon}_{r},$$
(19)

Liu et al. (2014) then test the local aggregate model against the local average model and vice versa. For that, they extend Kelejian's (2008) J test for spatial econometric models to differentiate between the local-aggregate and the local-average endogenous peer effects in an econometric network model with network fixed-effects. The idea of the J test is as follows. If a given model contains the correct set of regressors, then including the fitted values of an alternative model (or of a fixed number of competing models) into the null model should provide no significant improvement.

3.2.5 Endogenous network formation

The instrumental variable strategy proposed by Bramoullé et al. (2009) and developed above, however, works if the network is exogenous (i.e. it works conditional on the exogeneity of the adjacency matrix \mathbf{G}_r), which is not usually the case unless one has a controlled field experiment so that the network was formed exogenously (e.g., see Carrell et al., 2009, 2013). Alternatively, one needs to be able to plausibly rule out unobserved factors, or develop instruments that are clearly exogenous to the interaction structure, or else model network formation and try to account for factors that could have substantial influences on both behavior and network formation.²²

²²Observe that this problem can be mitigated if one observe the network at different points in time. For example, König et al. (2014a) study R&D collaborations between firms for over 20 years and use time and firm fixed effects. In that case, if the unobservables that make firms create R&D collaborations do not change over time, this methodology should be satisfactory.

An approach to dealing with this comes from Goldsmith-Pinkham and Imbens (2013). Under homophily, linked individuals are likely to be similar not only in terms of *observed characteristics* but also in terms of *unobserved characteristics* that could influence their behavior. By failing to account for similarities in (unobserved) characteristics, similar behaviors might mistakenly be attributed to peer influence when they simply result from similar characteristics. In order to highlight the problem, let us write the model (13) as follows:²³

$$\mathbf{Y}_{r} = \phi_{2} \mathbf{G}_{r}^{*} \mathbf{Y}_{r} + \beta \mathbf{X}_{r} + \gamma \mathbf{G}_{r}^{*} \mathbf{X}_{r} + \eta_{r} \mathbf{l}_{n_{r}} + \underbrace{\boldsymbol{\zeta} \mathbf{v}_{r} + \mathbf{e}_{r}}_{\boldsymbol{\varepsilon}},$$
(20)

where $\mathbf{v}_r = (v_{1,r}, \dots, v_{n_r,r})^{\mathrm{T}}$ denotes a vector of *unobserved characteristics* at the individual level and $\mathbf{e}_r = (e_{1,r}, \dots, e_{n_r,r})^{\mathrm{T}}$ is a vector of random disturbances. Let us consider a network formation model where the variables that explain the links between individuals *i* and *j* belonging to network *r*, i.e. $g_{ij,r}$, are the distances between them in terms of observed and unobserved characteristics, that is:

$$g_{ij,r} = \alpha + \sum_{m=1}^{M} \delta_m |x_{i,r}^m - x_{j,r}^m| + \theta |v_{i,r} - v_{j,r}| + \eta_r + u_{ij,r}$$
(21)

Homophily behavior in the unobserved characteristics implies that $\theta < 0$, i.e. the closer two individuals are in terms of unobservable characteristics, the higher is the probability that they are friends. If ζ is different from zero, then the network \mathbf{G}_r in model (20) is endogenous.

A testable implication of this problem would be to find a negative correlation between the predicted probability of forming a link (based on observable characteristics), as measured by $\widehat{g_{ij,r}}$, and the unobserved similarity in pairs, as measured by the difference in residuals from equation (20), $|\widehat{\varepsilon}_{i,r} - \widehat{\varepsilon}_{j,r}|$.²⁴ Evidence against network endogeneity would be to find a zero correlation.²⁵

Another way of dealing with this problem is to simultaneously (or sequentially) estimate (21) and (20) as in Goldsmith-Pinkham and Imbens (2013). For example, König et al. (2014a) propose a 3SLS estimation, where in the first stage, a network formation model similar to (21) is estimated.²⁶ Then, using the *predicted value of the adjacency matrix*, the authors perform the other stages using a similar IV approach as in Bramoullé et al. (2009)

²³For the argument, it does not matter of we take the local-average or the local-aggregate model.

²⁴Under dissortative matching (i.e. heterophily), the correlation should be positive.

 $^{^{25}}$ See Patacchini et al. (2014) who perform such a test.

²⁶The idea to use the *predicted* adjacency matrix \mathbf{G}_r^* to construct instruments can also be found in Kelejian and Piras (2014) and Comola and Prina (2014).

and described above. $^{\rm 27}$

One of the challenges of the Goldsmith-Pinkham's and Imbens' approach is that modelling network formation on a link-by-link basis is not very realistic because one must account for interdependencies (Chandrasekhar and Jackson, 2013; Jackson, 2013; Jackson et al., 2014). There is a powerful and natural formulation of network-formation models that takes these interdependencies into account. They are known as *exponential random graph models* (ERGMs)²⁸ However, because the number of possible networks on a given number of nodes is an exponential function of the number of nodes, it is practically impossible to estimate the likelihood of a given network and thus there is an important computational hurdle (see the discussion in Chandrasekhar and Jackson, 2013). Another possible approach is to model the network as an evolving process (see, e.g. Snyders, 2001; Christakis et al., 2010; Mele, 2013; König et al., 2014b) as such models allow for dependencies in that new links form based on the existing network at the time.

3.2.6 Multiple equilibria

Whereas the sections above mainly focus on linear models, we now consider non-linear models of social interactions, which typically generate multiple equilibria, as they induce externalities.²⁹ Bisin et al. (2011) use the Brock and Durlauf (2001) model of social interactions to study network effects in smoking, using AddHealth data on high schools. The model is an extension of the canonical random utility discrete choice model, where the utility of each choice is affected not only by individual attributes and a random term, but also by a term that captures influences from network contacts. Thus, agents maximize:

$$\max_{y_i \in \{-1,1\}} U\left(y_i, X_i, \pi_i, \varepsilon_i\right) = y_i \left(\beta X_i + \phi_2 \pi\right) + \varepsilon_i \left(y_i\right)$$
(22)

where π_i captures average smoking either among agent *i*'s direct social contacts (in the case of local interactions), or average smoking in the school as a whole (if we consider global interactions). The random term ε_i depends on the smoking choice y_i and follows an extreme value distribution:

$$\Pr\left(\varepsilon_{i}\left(-1\right)-\varepsilon_{i}\left(1\right)\leq z\right)=\frac{1}{1+\exp\left(-z\right)}.$$
(23)

 $^{^{27}}$ In Section 4.3, we discuss the paper of Del Bello et al. (2014) who also simultaneously estimate (21) and (20).

 $^{^{28}\}mathrm{See}$ Jackson (2008) for background on these models.

 $^{^{29}}$ Glaeser and Scheinkman (2001) derive sufficient conditions on the strength of interactions to generate multiplicity.

From the first-order conditions, the probability that agent i smokes is given by:

$$\Pr(y_i = 1) = \frac{1}{1 + \exp(-2(\beta X_i + \phi_2 \pi_i))}.$$
(24)

Assuming that the number of agents in each school is large enough, then a Law of Large Numbers argument applies and the following characterization of equilibrium is obtained, for the case of global interactions:

$$\pi = \sum_{i \in I} \tanh\left(\beta X_i + \phi_2 \pi\right).$$
(25)

It is easy to show that very non-linear effects may arise. Depending on which equilibrium a given school starts from, an increase in the utility cost of smoking (brought about for instance by a tobacco tax) may induce an increase or a decrease in equilibrium average smoking in the school. Similarly, an increase in the strength of social interactions or in the initial number of friends smoking in individual networks may cause-depending on the initial equilibrium-an increase or a decrease in eventual smoking. This is important from a policy perspective, since it emphasizes that a given policy may have counter-intuitive effects because of the non-linear feedbacks induced by network effects.

The model can be estimated using the techniques developed by Moro (2003).³⁰ As discussed in Manski (1993), the reflection problem is mitigated in non-linear models; further, the possible presence of correlated unobservables can be addressed using a Heckman-style approach to correct for selection into networks. Moro (2003) developed a two-step approach to tackle the issue of estimating equilibrium models with multiple equilibria. In the first stage, summary statistics of the equilibrium for each school are estimated, using non-parametric methods. In the second stage, the model parameters are estimated via maximum likelihood, conditioning the likelihood of the data on the first-stage estimates of the equilibrium. This allows the likelihood to be a well-behaved function, as opposed to a correspondence–as would be the case given the presence of multiple equilibria. This reduces the computational burden enormously.

Bisin et al. (2011) find evidence of strong network effects in smoking, both school-wide and at the level of individual friendship networks. The parameter estimates are consistent with the widespread presence of multiple equilibria among the schools considered in the AddHealth sample. As mentioned earlier, simulations of the model at the parameter estimates indicate that changes in attributes, the shape of networks, or various policies can have highly nonlinear and sometimes counter-intuitive effects, with the possibility of large shifts in smoking prevalence because of the presence of multiple equilibria.

³⁰See also Aguirregabiria and Mira (2007).

3.3 Empirical results

Let us expose the empirical results based on the theoretical models of Section 3.1 and discuss the policy implications.

3.3.1 Local-average model

This is the most tested model in the literature. Researchers have tested equation (9) using the methodology developed in Section 3.2.2. There is usually no theoretical model for the microfoundation of equation (9). Researchers have estimated this equation because it is similar to the one used in spatial econometrics (Anselin, 1988) and it is easier to test. The empirical results indicate that peer effects and network effects are important in education (Calvó-Armengol et al., 2009; De Giorgi et al., 2010; Lin, 2010; Bifolco et al., 2011; Boucher et al., 2014; Patacchini et al., 2014), crime (Patacchini and Zenou, 2012b), labor (Patacchini and Zenou, 2012a), consumption (De Giorgi et al., 2014), smoking (Fletcher, 2010; Bisin et al., 2011), alcohol consumption (Fletcher, 2012), and risk sharing (Angelucci et al., 2014).³¹

Equation (9) has also been tested using another IV approach. The idea is to treat the composition of students in a given grade within a school as quasi-random and to isolate this quasi-random variation in friendship network formation process. Using this approach, Fletcher and Ross (2012) find that students who have friends who smoke or drink are more likely to smoke or drink even when comparing observationally similar students who belonged to different cohorts in the same school and made exactly the same friendship choices on key student demographics. Fletcher et al. (2013) find that girls have higher grade point averages than very similar students in the same school when they belong to a cohort that implies more friends with a higher level of maternal education even after controlling for aggregate peer effects associated with maternal education. Finally, Patacchini and Zenou (2014) find strong peer effects in religion practice. They use the fraction of religious students of the same gender, religious affiliation and ethnic group in the same grade and school as an instrument for the individual fraction of religious friends.

3.3.2 Local-aggregate model

There are very few tests of the local-aggregate model. Two notable exceptions are Liu et al. (2012) and Lindquist and Zenou (2014) who test peer and network effects in crime. Both

³¹There are also some tests of the local-average model (games played on networks) in laboratory settings (see Kosfeld, 2004, Jackson and Yariv, 2011, and Charness et al., 2014, for additional background). There are also various field experiments that effectively involve games on networks, such as Centola (2010).

estimate equation (3) or its econometric equivalent (15) with IVs and network fixed effects (Section 3.2.3). Liu et al. (2012) use the National Longitudinal Survey of Adolescent Health (AddHealth) to estimate these network peer effects.³² The AddHealth database has been designed to study the impact of the social environment (i.e. friends, family, neighborhood and school) on adolescents' behavior in the United States by collecting data on students in grades 7-12 from a nationally representative sample of roughly 130 private and public schools in years 1994–95 (Wave I). Every pupil attending the sampled schools on the interview day is asked to compile a questionnaire (in-school data) containing questions on respondents' demographic and behavioral characteristics, education, family background and friendship. This sample contains information on roughly 90,000 students. A subset of adolescents selected from the rosters of the sampled schools, about 20,000 individuals, is then asked to compile a longer questionnaire containing more sensitive individual and household information (in-home and parental data). Those subjects are interviewed again in 1995–96 (Wave II), in 2001–2 (Wave III), and again in 2007-2008 (Wave IV).

From a network perspective, the most interesting aspect of the AddHealth data is the friendship information, which is based upon actual friends nominations. Indeed, pupils were asked to identify their best friends from a school roster (up to five males and five females). This information is collected in Wave I and one year after, in Wave II. As a result, one can reconstruct the whole geometric structure of the friendship networks. The AddHealth dataset also contains information on 15 delinquency items and the survey asks students how often they participate in each of these delinquent activities during the past year.

Using the AddHealth data, Liu et al. (2012) have estimated ϕ_1 for Wave I for 1,297 criminals distributed over 150 separate networks, with network size ranging between 4 and 77. They find an estimated value of ϕ_1 of 0.0457, which gives a social multiplier of 1.048 in the case of the dyad (see (6)). If we consider an average group of 4 best friends (linked to each other in a network), a standard deviation increase in the level of delinquent activity of each of the peers translates into a roughly 17 percent increase of a standard deviation in the individual level of criminal activity.

Lindquist and Zenou (2014) also estimate ϕ_1 from equation (15) with a very different dataset. They look at individuals in Sweden who are over 16 years old and who have been suspected (and convicted) for at least one crime. For that, they have access to the official police register of all persons who are suspected of committing a crime in Sweden. In this register, the police keeps records of who is suspected of committing a crime with whom.

 $^{^{32}}$ This dataset has also been used by Calvó-Armengol et al. (2009), Lin (2010), Bifolco et al. (2011), Fletcher (2010, 2012), and Patacchini et al. (2014).
In this context, a (criminal) link exists between two individuals if they are suspected of committing a crime together. Both the convictions data and suspects data include crime type, crime date, and sanction received. One advantage of this dataset over the AddHealth one is that links are not self-reported and are thus less subject to measurement errors. Another advantage is that information on links are available at each moment of time over a period of 20 years. As a result, they can add individual lagged crime as one of the individual level control variables.

They find an estimate of ϕ_1 of 0.167. This means that having only one friend increases my crime by 20 percent. If we consider the case of four individuals (their smallest network), then individual crime will increase by 100 percent compared to the case when the individual is committing crime by herself.

3.3.3 Local-aggregate versus the local-average model

Instead of testing each model separately, one can test one model against the other using the methodology developed in Section 3.2.4. Using the AddHealth data, Liu et al. (2014) find that, for "studying effort" (i.e. how hard students study in schools), students tend to *conform* to the social norm of their friends (local-average model) while, for sport activities, both the social multiplier (local-aggregate) and the social norm effect (local-average model) matter. On the contrary, for criminal activities, the local-aggregate model seems to be more appropriate (Liu et al., 2013).

In terms of policy implications, an effective policy for the *local-average* model would be to change people's perceptions of "normal" behavior (i.e. their social norm) so that a *groupbased policy* should be implemented while, for the *local-aggregate* model, this would not be necessary and an *individual-based policy* should instead be implemented.

Individual-based policies: Key players Let us first consider individual-based policies. Consider the case of crime, where we have shown that the local-aggregate model is at work, at least for the AddHealth data. In that case, a key-player policy (Ballester et al., 2006), whose aim is to remove the criminal that reduces total crime in a network the most, would be the most effective policy since the effort of each criminal and thus the sum of one's friends crime efforts will be reduced. In other words, the removal of the key player can have large effects on crime because of feedback effects or "social multipliers" (see, in particular, Kleiman, 2009; Glaeser et al., 1996; Verdier and Zenou, 2004). That is, as the fraction of individuals participating in a criminal behavior increases, the impact on others is multiplied through social networks. Thus, criminal behaviors can be magnified, and interventions can become more effective.

Formally, consider the local-aggregate model of Section 3.1.1 and denote by $Y_r^*(\mathbf{g}_r) = \sum_{i=1}^n y_{i,r}^*$ the total equilibrium level of crime in network \mathbf{g}_r , where $y_{i,r}^*$ is the Nash equilibrium effort given by (4). Denote also by $\mathbf{g}_r^{[-i]}$ the network \mathbf{g}_r without individual *i*. Then, in order to determine the key player, the planner will solve the following problem:

$$\max\{Y^*(\mathbf{g}_r) - Y^*(\mathbf{g}_r^{[-i]}) \mid i = 1, ..., n\}$$

When the original delinquency network \mathbf{g}_r is fixed, this is equivalent to:

$$\min\{Y^*(\mathbf{g}_r^{[-i]}) \mid i = 1, ..., n\}.$$
(26)

Ballester et al. (2006) and Ballester and Zenou (2014) have showed that, if $\phi_1 \mu_1(\mathbf{g}_r) < 1$, then the key player that solves (26) is i^* if and only if she is a delinquent with the highest *intercentrality* in \mathbf{g}_r , that is, $d_{i^*}(\mathbf{g}_r, \phi_1) \geq d_i(\mathbf{g}_r, \phi_1)$, for all i = 1, ..., n, where³³

$$d_{i}(\mathbf{g}_{r},\phi_{1}) = \mathbf{1}_{n_{r}}^{\mathrm{T}}\mathbf{M}(\mathbf{g}_{r},\phi_{1})\boldsymbol{\alpha}_{r} - \mathbf{1}_{n_{r}}^{\mathrm{T}}\mathbf{M}(\mathbf{g}_{r},\phi_{1})\boldsymbol{\alpha}_{r}^{[i]} + \mathbf{1}_{n_{r}}^{\mathrm{T}}\mathbf{M}^{[i]}(\mathbf{g}_{r},\phi_{1})\boldsymbol{\alpha}_{r}^{[i]}$$

$$= B(\mathbf{g}_{r},\phi_{1}) - B(\mathbf{g}_{r}^{[i]},\phi_{1}) + \frac{b_{\boldsymbol{\alpha}_{r}^{[i]},i}(\mathbf{g}_{r},\phi_{1})\sum_{j=1}^{n}m_{ji}(\mathbf{g}_{r},\phi_{1})}{m_{ii}(\mathbf{g}_{r},\phi_{1})}$$
(27)

The intercentrality measure (27) highlights the fact that when a delinquent is removed from a network, two effects are at work. The first effect is the *contextual effect*, which indicates the change in the contextual effect α_r (from α_r to $\alpha_r^{[i]}$) after the removal of the key player while the network \mathbf{g}_r remains unchanged. The second effect is the *network effect*, which captures

$$\mathbf{1}_{n_{r}}^{\mathrm{T}}\mathbf{M}^{[i]}(\mathbf{g}_{r},\phi_{1})\boldsymbol{\alpha}_{r}^{[i]} = b_{\boldsymbol{\alpha}_{r}^{[i]},i}(\mathbf{g}_{r},\phi_{1})\sum_{j=1}^{n}m_{ji}(\mathbf{g}_{r},\phi_{1})/m_{ii}(\mathbf{g}_{r},\phi_{1}).$$

³³To understand (27), let $\mathbf{M}(\mathbf{g}_r, \phi_1) = (\mathbf{I}_{n_r} - \phi_1 \mathbf{G}_r)^{-1}$ and let its entries be $m_{ij}(g, \phi)$, which count the number of walks in \mathbf{g}_r starting from *i* and ending at *j*, where walks of length *k* are weighted by ϕ_1^k . Then, we know from (5) that the Katz-Bonacich vector of centralities is simply $\mathbf{b}_{\alpha_r} = \mathbf{M}(\mathbf{g}_r, \phi_1)\boldsymbol{\alpha}_r$. Thus $b_{i,r}(\mathbf{g}_r, \phi_1)$ is the Katz-Bonacich centrality of *i* in network \mathbf{g}_r , $B(\mathbf{g}_r, \phi_1)$ is the sum of the Katz-Bonacich centralities in network \mathbf{g}_r , i.e. $B(\mathbf{g}_r, \phi_1) = \mathbf{1}_{n_r}^T \mathbf{M}(\mathbf{g}_r, \phi_1)\boldsymbol{\alpha}_r$ (where $\mathbf{1}_{n_r}$ is an *n*-dimensional vector of ones and $\mathbf{1}_{n_r}^T$ is its transpose) and $B(\mathbf{g}_r^{[-i]}, \phi_1) = \mathbf{1}_{n_r}^T \mathbf{M}^{[-i]}(\mathbf{g}_r, \phi_1)\boldsymbol{\alpha}_r^{[-i]}$ is the sum of the Katz-Bonacich centralities in network $\mathbf{g}_r^{[-i]}$ where $\boldsymbol{\alpha}_r^{[-i]}$ is a $(n_r - 1) \times 1$ column vector in which $\alpha_{i,r}$ has been removed and $\mathbf{M}^{[-i]}(\mathbf{g}_r, \phi_1) =$ $(\mathbf{I}_{n_r} - \phi_1 \mathbf{G}_r^{[-i]})^{-1}$ is a $(n - 1) \times (n - 1)$ matrix in which the *i*th row and *i*th column corresponding to *i* has been removed from $\mathbf{M}^{[-i]}(\mathbf{g}_r, \phi_1)$. Finally, let $\boldsymbol{\alpha}_r^{[i]}$ be a $(n \times 1)$ column vector where all entries but *i* are defined as $\boldsymbol{\alpha}_r^{[-i]}$, while entry *i* contains the initial $\alpha_{i,r}$, and let $\mathbf{M}^{[i]}(\mathbf{g}_r, \phi_1) \mathbf{\alpha}_r^{[i]}$ and

the change in the network structure when the key player is removed. More generally, the intercentrality measure $d_i(\mathbf{g}_r, \phi_1)$ of delinquent *i* accounts both for one's exposure to the rest of the group and for one's contribution to every other exposure.

Liu et al. (2012) were the first to test the key-player policy using the AddHealth data. As mentioned above, they find an estimate value of ϕ_1 of 0.0457. They then calculate the key player for each network using the intercentrality measure (27). They find that the key player is *not* necessarily the most active criminal in the network. They also find that it is *not* straightforward to determine which delinquent should be removed from a network by only observing his or her criminal activities or position in the network. Compared to other criminals, the key players are less likely to be a female, are less religious, belong to families whose parents are less educated and have the perception of being more socially excluded. They also feel that their parents care less about them, are more likely to come from single-parent families and have more troubles getting along with their teachers.

Lindquist and Zenou (2014) also test the key-player policy but with different data (the co-offending networks mentioned above). While Liu et al. (2012) observed the network at only one point in time, Lindquist and Zenou (2014) consider two periods of three years each (2000 to 2002 and 2003 to 2005). The Period 1 data set includes 15,230 co-offenders who are suspected of committing (on average) 5.91 crimes each and who are distributed over 1,192 separate networks. The Period 2 data set includes 15,143 co-offenders who are suspected of committing (on average) 5.92 crimes each and who are distributed over 1,185 networks. Their data also include 3,881 individuals who are members of a network with four or more persons in *both* periods. They show that 23% of all key players are not the most active criminal in their own networks; 23% do not have the highest eigenvector centrality; and 20% do not have the highest betweenness centrality.³⁴

As stated above, their estimate of peer effects ϕ_1 is 0.167. They show that the key player model predicts that the (average) reduction in crime for the mean network (with size = 80) is equal to 30%. Second, this reduction in crime is negatively related to network size. If one looks at a network that is twice as large as the mean network (i.e., with size = 160), then the predicted percentage reduction in crime is equal to 26% while the predicted decrease for the smallest networks (with size = 4) is equal to 35%.

Given that the key-player policy can be controversial and can be costly to implement, we want to know by how much does the key player policy outperform other reasonable policies. Because they have two periods of time (2000 to 2002 and 2003 to 2005), Lindquist and Zenou

 $^{^{34}}$ Eigenvector centrality and betweenness centrality are well-known measures of centrality. See Wasserman and Faust (1994) and Jackson (2008) for a complete overview of the different existing centrality measures.

(2014) can test the prediction of crime reduction following the key-player policy against the true outcome observed in Period 2 data. For that, they look at the relative effect of removing the key player in those cases in which the key player is no longer a part of the active network. To do this, they create an indicator variable for each person indicating whether or not they have died during the relevant time period and if they have been placed in prison. Their results indicate that, in the real-world, the key player policy outperforms the random player policy by 9.58%. The key player policy also outperforms the policy of removing the most active player by 3.16% and the policy of removing the player with the highest eigenvector and betweenness centrality by 8.12% and 2.09%, respectively.³⁵

Group-based policies As stated above, if the *local-average model* is at work then a key-player policy would have much smaller effect since it will not affect the social norm of each group of friends in the network. To be effective, one would have to change the social norm for each of the criminals, which is clearly a more difficult objective. In that case, one needs to target a group or gang of criminals to drastically reduce crime. It is indeed clearly much more complicated to implement a group policy than an individual policy since it is very difficult to change the social norm of a group. Consider education. Then, since the local-average model seems important (at least in the AddHealth data), we should change the social norm in the school or the classroom and try to implement the idea that it is "cool" to work hard at school.³⁶ An example of a policy that has tried to change the social norm of students in terms of education is the *charter-school* policy. The charter schools are very good in screening teachers and at selecting the best ones. In particular, the "No Excuses policy" (Angrist et al., 2010, 2012) is a highly standardized and widely replicated charter

³⁵Other papers have tested the key-player policies for other activities. For R&D networks, König et al. (2014a) calculate the key firms, which are the firms for which their removal will reduce total welfare the most. Banerjee et al. (2013) study a problem related to the key-player issue. Their data come from a survey on 75 rural villages in Karnataka, India, that the authors conducted to obtain information on network structure and various demographics. They look at the diffusion of a microfinance program in these villages and show that, if the bank in charge of this program, had targeted individuals in the village with the highest eigenvector centrality (a measure related to the Katz-Bonacich centrality), the diffusion of the microfinance program (i.e. take-up rates) would have been much higher. For an overview of key-player policies, see Zenou (2015b).

³⁶This is related to the "acting white" literature where it is argued that African American students in poor areas may be ambivalent about studying hard in school because this may be regarded as "acting white" and adopting mainstream identities (Fordham and Ogbu, 1986; Delpit, 1995; Ainsworth-Darnell and Downey, 1998; Austen-Smith and Fryer, 2005; Battu et al., 2007; Fryer and Torelli, 2010; Battu and Zenou, 2010; Bisin et al., 2011; de Martí and Zenou, 2012).

model that features a long school day, an extended school year, selective teacher hiring, strict behavior norms, and emphasizes traditional reading and math skills. The main objective is to change the social norms of disadvantage kids by being very strict on discipline. This is a typical policy that is in accordance with the local-average model since its aim is to change the social norm of students in terms of education. Angrist et al. (2012) focus on special needs students that may be underserved. Their results show average achievement gains of 0.36 standard deviations in math and 0.12 standard deviations in reading for each year spent at a charter school called: Knowledge is Power Program (KIPP) Lynn, with the largest gains coming from the Limited English Proficient (LEP), Special Education (SPED), and low-achievement groups. They show that the average reading gains were driven almost entirely by SPED and LEP students, whose reading scores rose by roughly 0.35 standard deviations for each year spent at KIPP Lynn.

Boarding schools could also be a way of changing the social norm in terms of education. For example, the SEED schools are boarding schools serving disadvantaged students located in Washington, D.C., and Maryland. The SEED schools, which combine a "No Excuses" charter model with a 5-day-a-week boarding program, are America's only urban public boarding schools for the poor. The SEED schools serve students in grades 6–12. Like other "No Excuses" charter schools e.g., the Knowledge Is Power Program or the Harlem Children's Zone, SEED schools have an extended school day; provide extensive after-school tutoring for students who need support; rely heavily on data to alter the scope, pace, and sequence of instruction; and maintain a paternalistic culture with high expectations. Curto and Fryer (2014) provide the first causal estimate of the impact of attending SEED schools on academic achievement. Using admission lotteries, they show that attending a SEED school increases achievement by 0.211 standard deviation in reading and 0.229 standard deviation in math per year.

4 Neighborhood and network effects

So far, we have exposed separately the literature on neighborhood and network effects. We have seen that there are some similarities, especially when researchers do not have data on the social space and approximate it by the geographical space (see, in particular, Bayer et al. (2008), Patacchini and Zenou (2012), and Helmers and Patnam (2014) in Section 2.1.2). However, these two spaces are different and we need an explicit analysis of both of them in order to better understand their relationships and how they affect outcomes. For example, if we want to understand the adverse labor-market outcomes of ethnic minorities, we need to

analyze each space and see how they reinforce each other. Unfortunately, this branch of the literature is still in infancy and most research has been done from a theoretical perspective with only a few empirical tests. Let us expose this research.³⁷

4.1 Theory: Spatial models with social networks

We will expose different models that integrate the urban and social space. We start with models with social interactions, then consider weak and strong ties and end up with explicit networks using graph theory. As we enrich the social space, we model the urban space in a simpler way from a general urban model to a model with only two locations.

4.1.1 Spatial models with social interactions

In this section, the social network is not explicitly modeled but is captured through social interactions. On the contrary, the geographical space is explicitly modeled as in the standard urban economics literature (Fujita, 1989; Zenou, 2009; Fujita and Thisse, 2013).

There is an early literature that deals with the endogenous location of firms and workers and the formation of cities by explaining why cities exist, why cities form where they do and why economic activities agglomerate in a small number of places (Fujita and Thisse, 2013). The key papers in this literature are that of Ogawa and Fujita (1980) and Fujita and Ogawa (1982) who solve a more general model that includes both firms and households (see also Beckmann, 1976, Borukhov and Hochman, 1977, Papageorgiou and Smith, 1983). Their papers model the emergence of urban centers brought about by household and firm location decisions in the context of spatially differentiated labor and land market interactions. Consider, for example, Fujita and Ogawa (1982). The key aspect of this model is to assume that productivity in location is a function of the density of economic activity at various locations weighted by a decay function. In other words, the agglomeration force is the existence of informational spillovers among firms. An important characteristic of information is its public good nature: the use of a piece of information by a firm does not reduce its content for other firms. Hence the diffusion of information within a set of firms generates *externality-like* benefits to each of them. Provided that the information owned by firms is different, the benefits of communication generally increase as the number of firms involved rises. Furthermore, since the quality of information involves distance-decay effects, the

³⁷In economics, Ioannides (2012) is a good starting point even though few analyses incorporate the two spaces. In sociology, there are some discussions of these issues. See, in particular, Guest and Lee (1983), Wellmann (1996), Otani (1999) and Mouw and Entwisle (2006).

benefits are greater if firms locate closer to each other. Therefore, all other things being equal, each firm has an incentive to be close to others, thus fostering the agglomeration of firms. This is the social interaction aspects of these types of models (Beckmann, 1976, has a similar model but for individuals rather than firms). Of course, there are also disagglomeration effects because the clustering of many firms in a single area increases the average commuting distance for their workers which, in turn, increases the wage rate and land rent in the area surrounding the cluster. Consequently the equilibrium distributions of firms and households are determined as the balance between these opposite forces.

In Fujita and Ogawa (1982), this type of specification yields a rich set of possible outcomes. Depending on the importance of the spatial decay function relative to commuting costs, many urban configurations are possible, from a purely monocentric city to complete dispersion.³⁸ None of these papers, however, offers much detail regarding the information externality nor the spatial decay function.³⁹

Helsley and Strange (2007) propose an interesting spatial model of urban interactions where agents choose to visit a particular location to interact with others.⁴⁰ A critical component of the model is the decision taken by a city's firms or households to visit a particular location to interact with others. The greater the aggregate number of visits, the greater is the value derived from any given visit. Visits involve transportation costs, however, and this generates downward sloping equilibrium housing rent, land rent and population density functions. In equilibrium, all of these must be consistent with the interactions that take place in the center.

To be more precise, consider the location space as a long, narrow strip of land where there is one unit of land at each location. All interactions occur at a single location, the central business district (CBD). Locations are completely characterized by their distance from this CBD, given by the variable x. Consumers are identical and derive utility from residential (or commercial) space q, other goods z (the numeraire) and interaction according to the additively separable utility function:

$$u(y_i,S) = q_i + z_i + v\left(y_i,S\right)$$

where y_i is the number of visits to the center for agent *i* and *S* measures the quality of interactions there. Assume that $v(y_i, S)$ is increasing and strictly quasi-concave in both arguments, with $\partial^2 v(y_i, S) / \partial y_i \partial S > 0$. This last assumption means that the marginal value

³⁸This type of model has been extended by Helsley (1990), Ota and Fujita (1993), Lucas (2001), Berliant et al. (2002), and Lucas and Rossi-Hansberg (2002).

³⁹See Duranton and Puga (2004) for a critical overview on these issues.

 $^{^{40}}$ See also Brueckner et al. (2002) and Brueckner and Lagey (2008).

of a visit to the center is increasing in the quality of the interactions there. There are two costs associated with a visit to the center: a fixed cost T and transportation cost tx, t > 0. Since consumers are assumed to be all identical and have the same income w, we can skip the subscript i. The budget constraint for a consumer with income w at location x is

$$z = w - R(x)q - (T + tx)y$$
(28)

where R(x) is rent per unit of space at distance x from the CBD. We assume that each consumer occupies one unit of space, i.e. q = 1. Combining these two equations, the consumer chooses y that maximizes

$$u(y,S) = 1 + w - R(x) - (T + tx)y + v(y,S)$$

Solving this equation leads to a unique $y^* \equiv y(S, x)$ and it easily verified that the optimal number of visits y^* made to the center increases with the quality of interactions S and decreases with distance x. The key new element here is to specify interaction quality, S. Helsley and Strange (2007) assume that the equilibrium level of interaction quality satisfies:

$$S = \int_{0}^{x_{f}(S)} F(y(S, x)) n(S, x) dx$$
(29)

where $x_f(.)$ is the city fringe and F(.) is increasing and strictly concave, and F(0) = 0. Since each consumer occupies one unit of space, and there is one unit of land at each location, n(.) equals population, population density (persons per unit land) and structural density (units of residential or commercial space per unit land). Here, each agent has the potential to benefit from interacting with any other agent. However, the value of interacting with any particular agent exhibits a diminishing marginal impact, captured by the concavity of F(.). In this model, the interdependence between agents arises from the endogeneity of interactions: agents choose jointly both how much to contribute to a location and how much to make use of that location. It is easily seen that the solution of S is a fixed point. The model is then easily closed by considering an open city with free migration and having a free-entry condition for builders.

Mossay and Picard (2011, 2013) propose a model in the same vein where the utility function is given by

$$u(q, z, S) = z + S(x) - \frac{\beta}{2q}$$

where β is the preference for residential space and where social interactions are equal to

$$S(x) = A - \int n(x')T(x - x') \, dx'$$

where A denotes the total return from interacting with other agents and $\int n(x')T(x-x') dx'$ reflects the cost of reaching other agents from location x where n(x) is the population density with $\int n(x)dx = 1$. In this formulation of social interactions, the authors consider a linear cost function $T(x-x') = 2\tau |x-x'|$, where τ measures the intensity of travelling costs. In this model, each agent *interacts with all other agents* and A is assumed to be large enough so as to ensure that $S(x) \ge 0$, for any location x. Mossay and Picard have a similar budget constraint as in (28), i.e. z = w - R(x)q so that consumers choose q and z that maximize u(q, z, S). The authors then calculate a spatial equilibrium in a monocentric city so that no agent has an incentive to relocate. They show that there is a unique spatial equilibrium under the assumption of global social interactions where each agent interacts with all other agents residing in the same city.

In all these models, the interactions between the social and geographical spaces is explicitly modeled. However, apart from their residential location, the outcome of workers is *not* taken into account. Picard and Zenou (2014) extend the previous models to introduce the labor-market outcomes of workers where it is assumed that social interactions are the main channel for finding employment. Indeed, consider two populations and assume that each individual of type i (i.e. belonging to population i = 1, 2) located at a distance x from the CBD can only *socially* interact with the members of her own population but must decide with how many of them she wants to interact with, given that each social interaction implies a travel cost τ (per unit of distance) but leads to a job information.

In this context, the expected utility of an individual of type i residing at location x is given by:

$$u_i(x) = e_i(x)(w - t|x|) - T_i(x) - R(x)$$
(30)

where $e_i(x)$ is the individual's employment probability, $T_i(x)$ is the total travel cost at a distance x due to social interactions and R(x) is the land rent at a distance x from the CBD.⁴¹ In this expression, all workers from the same group, employed and unemployed, socially interact with each other. The steady-state employment rate is:

$$e_i(x) = \frac{\pi_i(x)}{\pi_i(x) + \delta} \tag{31}$$

where δ is the exogenous destruction rate while $\pi_i(x)$ is the probability of finding a job at a distance x from the CBD for a worker from population *i*.

Let us be more precise about the meeting process between agents. Each individual of type *i* residing at *x* meet $n_i(x)$ persons from her own population to socially interact with

⁴¹Unemployment benefits are normalized to zero.

them. This means that each individual meets $n_i(x)$ times all her population mates in a deterministic way during the period considered in the model. Since social interactions occurs at the residence place of the potential information holder, the cost of those social interactions is equal to $T_i(x) = n_i(x) c_i(x)$ where

$$c_i(x) = \frac{1}{P_i} \int_{D_i} \tau |x - y| \,\mathrm{d}y \tag{32}$$

measures the average cost of a single social interaction and P_i is the total population of individuals of type *i*. Observe that it is assumed that there is a uniform distribution of workers in the city and this is why (given that each worker consumes one unit of land) the density of workers at each location is given by $1/P_i$. As a result, each worker *i* residing at *x* socially interacts with all members of her own population and each of these interactions implies a commuting cost of τ per unit of distance. Observe also that the location *x* of a worker *i* is crucial to determine $c_i(x)$. If, for example, a worker *i* lives close to the CBD, then her cost $c_i(x)$ will be relatively low since this worker will be at the same distance from the left and the right of *x*. But, if this worker is located at one end of the city, then $c_i(x)$ will be very high.

Since each social interaction leads to a job information, the individual's probability of finding a job for a worker of type i residing at x is equal to:

$$\pi_i(x) = \alpha n_i(x) \frac{E_i}{P_i} \tag{33}$$

where α is a positive constant and E_i/P_i denotes the employment rate for workers of type i. This equation captures the fact that each individual i located at x meets $n_i(x)$ workers from her own population but only those who are employed provide some information about jobs. This highlights the random search process since the probability of employment of each person met by worker i is just E_i/P_i and is not specific to the person met. Quite naturally, the individual's probability of finding a job increases with the number of social interactions $n_i(x)$ and with the employment rate in her own population.

In this model, each individual choose $n_i(x)$ that maximizes (30), which is obtained by plugging (33) into (31) and then into (30) and plugging (32) into $T_i(x) = n_i(x) c_i(x)$ and then into (30). When deciding the optimal level of social interactions, an individual *i* located at *x* trades off the benefits of an increase in $n_i(x)$, which raises her chance of obtaining a job with its costs, since more social interactions imply more travelling and thus higher $c_i(x)$.

Consider first a homogenous population. Then, in a monocentric city, one can easily close the model by solving for the land and labor equilibrium conditions and make sure that everything is consistent. In that case, it is easy to show that $c(x) = \frac{\tau}{P}(b^2 + x^2)$ on the city support D = [-b, b] where b is the city border and x = 0 is the CBD. Picard and Zenou (2014) show that the employment probability $\pi(x)$ and the optimal number of social interactions n(x) decrease with x, the distance from the city center.

If we now consider two populations who do not socially interact with each other, then it can be shown that there exists a spatially segregated equilibrium where population 1 resides around the city center while population 2 is located at both ends of the city. In this equilibrium, the employment rate of population 1 is always higher than that of population 2 whatever their relative sizes, E_1/P_1 and E_2/P_2 . It can also be shown that each worker's employment probability $e_i(x)$ and the number of social interactions $n_i(x)$ decrease with x. Indeed, a residential location further away from the city center reduces the net gain from employment for both populations as well as each individual's average access to her social network. As a result, individuals have less incentives to find a job. This result is interesting because it highlights the feedback effect of space and segregation on labormarket outcomes. If we take two identical populations will result from the existence of spatial segregation and the resulting spatial organization of workers' social networks. Workers obtain job information through their social contacts that belong to the same type but organize in a different way through the urban area.

4.1.2 Spatial models with weak and strong ties

In the previous section, the modeling of social networks was implicit and captured through social interactions. For example, in Picard and Zenou (2014), workers were interacting with all other workers of the same type in the city and each social interaction could lead to a job information if one met someone who already had a job. We would like now to enrich the social network aspect by differentiating between job information from strong ties (close and regular relationships such as family and friends) and from weak ties (random and irregular relationships). The notion of weak and strong ties was initially developed by Granovetter (1973, 1974, 1983)⁴² who stipulate and show that weak ties are superior to strong ties for providing support in getting a job. Indeed, in a close network where everyone knows each

 $^{^{42}}$ In his seminal papers, Granovetter (1973, 1974, 1983) defines weak ties in terms of lack of overlap in personal networks between any two agents, i.e. weak ties refer to a network of acquaintances who are less likely to be socially involved with one another. Formally, two agents A and B have a weak tie if there is little or no overlap between their respective personal networks. Vice versa, the tie is *strong* if most of A's contacts also appear in B's network.

other, information is shared and so potential sources of information are quickly shaken down so that the network quickly becomes redundant in terms of access to new information. In contrast, Granovetter stresses the *strength of weak ties* involving a secondary ring of acquaintances who have contacts with networks outside ego's network and therefore offer new sources of information on job opportunities.

Montgomery (1994), Calvó-Armengol et al. (2007), Patacchini and Zenou (2008) and Zenou (2013, 2015a) propose to model the impact of weak and strong ties on workers' outcomes using a dyad model so that the social network is very simplified but keeps the interaction between the two types of ties. Formally, consider a population of individuals of size one and assume that individuals belong to mutually exclusive two-person groups, referred to as dyads. We say that two individuals belonging to the same dyad hold a strong tie to each other. We assume that dyad members do not change over time. A strong tie is created once and for ever and can never be broken. Individuals can be in either of two different states: employed or unemployed. Dyads, which consist of paired individuals, can thus be in three different states,⁴³ which are the following: both members are employed -we denote the number of such dyads by d_2 ; one member is employed and the other is unemployed (d_1); both members are unemployed (d_0). By denoting the employment rate and the unemployment rate at time t by e(t) and u(t), where $e(t), u(t) \in [0, 1]$, we have:

$$\begin{cases} e(t) = 2d_2(t) + d_1(t) \\ u(t) = 2d_0(t) + d_1(t) \end{cases}$$
(34)

The population normalization condition can then be written as

$$e(t) + u(t) = 1$$
 (35)

or, alternatively,

$$d_2(t) + d_1(t) + d_0(t) = \frac{1}{2}$$
(36)

Let us explain how social interactions are modeled. Time is continuous and individuals live forever. Matching can take place between dyad partners or not. At time t, each individual can meet a weak tie with probability $\omega(t)$ (thus $1 - \omega(t)$ is the probability of meeting his strong-tie partner at time t).⁴⁴ These probabilities are constant and exogenous, do not vary over time and thus, they can be written as ω and $1 - \omega$. We refer to matchings inside the dyad partnership as strong ties, and to matchings outside the dyad partnership as weak ties

⁴³The inner ordering of dyad members does not matter.

⁴⁴If each individual has one unit of time to spend with his friends, then $\omega(t)$ can also be interpreted as the percentage of time spent with weak ties.

or random encounters. Within each matched pair, information is exchanged in the following way. Each job offer is taken to arrive only to employed workers, who can then direct it to one of their contacts (through either strong or weak ties). This is a convenient modelling assumption, which stresses the importance of on-the-job information.⁴⁵ To be more precise, employed workers hear of job vacancies at the exogenous rate λ while they lose their job at the exogenous rate δ . All jobs and all workers are identical (unskilled labor) so that all employed workers obtain the same wage. Therefore, employed workers, who hear about a job, pass this information on to their current matched partner, who can be a strong or a weak tie. It is readily checked that the net flow of dyads from each state between t and t + dtis given by:

$$\begin{cases} \mathbf{\dot{d}}_{2}(t) = [1 - \omega + \omega e(t)] \lambda d_{1}(t) - 2\delta d_{2}(t) \\ \mathbf{\dot{d}}_{1}(t) = 2\omega e(t)\lambda d_{0}(t) - \delta d_{1}(t) - [1 - \omega + \omega e(t)] \lambda d_{1}(t) + 2\delta d_{2}(t) \\ \mathbf{\dot{d}}_{0}(t) = \delta d_{1}(t) - 2\omega e(t)\lambda d_{0}(t) \end{cases}$$
(37)

Take, for example, the first equation. Then, the variation of dyads composed of two employed workers $(d_2(t))$ is equal to the number of d_1 -dyads in which the unemployed worker has found a job (through either her strong tie with probability $(1 - \omega)\lambda$ or her weak tie with probability $\omega e(t)\lambda$) minus the number of d_2 -dyads in which one of the two employed workers has lost his job. Observe that the urban spatial structure will be less rich here because, in all the models of Section 4.1.1, the social interactions were localized and individuals had to commute to each other person in order to interact with her. In equilibrium, the choice of social interactions for each person had to be consistent with the global level of interactions in the city (see e.g. equation (29)).

In the present model, social interactions or social networks are not localized. Workers meet their strong ties without commuting because either they live with them (if, for example, it is a couple) or they are close relatives or friends that can be reached without commuting (for example, by telephone). Workers also meet their weak ties without having to pay extra commuting costs because they meet in common places (for example, in the gym or tennis club or in a bar). As a result, if a worker is unemployed in a d_1 dyad, this means that, without commuting, she will meet her strong tie $1 - \omega$ percent of her time and to obtain a job, it has to be that the strong tie has heard about a job, which occurs at rate λ . She will also meet her weak tie (without commuting) ω percent of her time and to obtain a job

 $^{^{45}}$ Zenou (2015a) relaxes this assumption by studying a model where jobs can be found through social networks but also directly by unemployed workers.

this weak tie has to be employed and have heard about a job, which occurs with probability $e(t)\lambda$.

By solving the system of equations (37) in steady-state, it can be shown that there exists an interior equilibrium where the employment rate is given by:

$$e^* = \frac{\sqrt{\lambda \left[\lambda + 4\delta \left(1 - \omega\right)\right]} - 2\delta + 2\lambda\omega - \lambda}{2\lambda\omega} \tag{38}$$

Moreover, it is easily verified that increasing ω , the time spent with weak ties, raises the steady-state employment rate e^* , confirming the initial idea of Granovetter that weak ties are superior to strong ties in providing information about jobs. Here, it is because workers stuck in a d_0 dyad can never find a job through their strong tie (who is unemployed) but only via their weak ties while this is not true in a d_1 dyad.

Following Zenou (2013), we can then close the model by locating all workers in a monocentric city and assume that they have an expected utility similar to (30), that is⁴⁶

$$u(x) = e^* (w - tx) - (1 - e^*) stx - T(x) - R(x)$$
(39)

where it is assumed that the employed workers commute more to the CBD than the unemployed workers (0 < s < 1 is the fraction of time the unemployed workers commute to the CBD) and e^* is given by (38). The cost of social interaction T(x) is defined as

$$T(x) = \omega(x) \int \tau |x - y| \, \mathrm{d}y$$

If social interactions ω are endogenized so that workers choose ω that maximizes (39) minus social-interaction costs, then workers face a trade off between higher ω , which increase their chance of finding a job, and lower ω because of higher social interaction costs. It is straightforward to see that the optimal ω is decreasing with x, the distance to the CBD. This is because it is always more expensive to commute to the CBD when employed than when unemployed (i.e. t > st) so that the marginal gain of interacting with weak ties is higher for workers residing closer to jobs than for those locating further away from the CBD.

This model can then be extended by introducing two populations, say black and white workers, where *strong ties* are always of the same race (family, best friends) and there is no spatial costs of interacting with them because they tend to live in the same neighborhood. On the contrary, *weak ties* can be of either race and meeting them implies a commute to the center of activities, here the CBD. Black and white workers are totally identical (in terms of characteristics, skills, etc.). If there is discrimination in the housing market (which

⁴⁶This utility function is similar to that of Picard and Zenou (2014). See (30).

is well-documented; see e.g. Yinger, 1986, 1997) against black workers so that they tend to reside further away from jobs than whites, then it can be shown that the former will experience higher unemployment rate than the latter. Indeed, because black workers reside far away from the CBD, they will tend to interact less with weak ties, especially whites, and more with their strong ties. Weak ties are an important source of job information and when black individuals miss it, they end up having a higher unemployment rate than whites. This is a vicious circle since blacks experience a higher unemployment rate and mostly rely on other black workers who also experience a high unemployment rate, etc. Since jobs are mainly found through social networks via employed friends, black individuals are stuck in their location with no job. In particular, those residing far away from jobs, will mainly rely on their strong ties. As a result, when they find themselves in a d_0 -dyad, they have nearly no chance of leaving it since the only way out is to meet an employed weak tie. In the model, the lack of social contacts between blacks and whites⁴⁷ thus explains why the social network of black workers is not of good quality and why black workers experience high unemployment rates.⁴⁸

To summarize, in this framework, ethnic minorities experience higher unemployment rate because they are *separated both in the urban and the social space*.⁴⁹

4.1.3 Spatial models with explicit social networks

In this section, we would like to have an even richer structure of social networks by modeling them as in Section 3.1. The seminal paper of Jackson and Wolinsky (1996) was the first paper that models network formation in a game-theoretical framework. In their model, individuals benefit from direct but also indirect links but with a decay. They pay, however, an exogenous cost for creating a link. Johnson and Gilles (2000) and Jackson and Rogers (2005) extend this model by assuming that the cost of creating a link is proportional to the *geographical distance* between two individuals so that agents living further away are less likely to form links because the costs are higher. These are interesting models that mainly

⁴⁷Mouw and Entwisle (2006) show empirically that about a third of the level of racial friendship segregation in schools is attributable to residential segregation. Most of this effect is the result of residential segregation across schools rather than within them.

⁴⁸American metropolitan areas are segregated by race, both by neighborhood and across jurisdiction lines. In 1980, after a century of suburbanization, 72% of metropolitan blacks lived in central cities, compared to 33% of metropolitan whites (Boustant, 2010).

⁴⁹Sato and Zenou (2014) investigate the impact of urban structure on the choice of social interactions. They show that, in denser areas, individuals choose to interact with more people and meet more weak ties than in sparsely populated areas.

show that geographical distance can hinder relationships and social interactions between agents. However, in these models, equilibrium networks are difficult to characterize and the focus is on network formation and not on individuals' outcomes.

Following Helsley and Zenou (2014), we would like to develop a simple model where the impact of network structure and urban space on workers' outcomes is analyzed. Contrary to the previous models, there are only two locations, the center located at 0, where all interactions occur, and the periphery located at 1 (geographical space). Each agent is also located in a social network (social space) where, as in Section 3.1, a network is captured by the $n \times n$ adjacency matrix **G** with entry g_{ij} , which keeps track of all direct connections so that $g_{ij} = 1$ if agent *i* is connected to agent *j* and $g_{ij} = 0$ otherwise.⁵⁰

We study a two-stage game where the *n* agents first choose their geographic location and then, as in as Helsley and Strange (2007),⁵¹ the number of visits to the center. Consider the local-aggregate model described in Section 3.1.1 so that individuals in network **g** derive utility

$$U_i(y_i, \mathbf{y}_{-i}, \mathbf{g}) = w + \alpha_i y_i - \frac{1}{2} y_i^2 + \phi_1 \sum_{j=1}^n g_{ij} y_i y_j$$
(40)

where $\phi_1 > 0$ and where w stands for income and y_i is the number of visits that agent i makes to the center, \mathbf{y}_{-i} is the corresponding vector of visits for the other n-1 agents. Agents located in the periphery must travel to the center to interact with others. Letting t represent marginal transport cost, then $\alpha_i = \alpha - tx_i$. Thus, for each agent i residing in the periphery (i.e. $x_i = 1$), $\alpha_i = \alpha - t$ while, for agents living in the center (i.e. $x_i = 0$), $\alpha_i = \alpha$. We assume $\alpha > t$, so that $\alpha_i > 0$, $\forall x_i \in \{0,1\}$ and hence $\forall i = 1, 2, ...n$. We imagine that each visit results in one interaction, so that the aggregate number of visits is a measure of aggregate interactivity. As in (1), utility (40) imposes additional structure on the interdependence between agents; under (40) the utility of agent i depends on her own visit choice and on the visit choices of the agents with whom she is directly connected in the network, i.e., those for whom $g_{ij} = 1$.

Each agent *i* chooses y_i to maximize (40) taking the structure of the network and the visit choices of other agents as given. Using the results of Section 3.1.1, it is straightforward to see that, if $\phi_1 \mu(\mathbf{G}) < 1$, there is a unique Nash equilibrium in visits to the center given by

$$\mathbf{y}^* = (\mathbf{I}_n - \phi_1 \mathbf{G})^{-1} \,\boldsymbol{\alpha} = \mathbf{M} \boldsymbol{\alpha} = \mathbf{b}_{\boldsymbol{\alpha}}(\mathbf{g}, \phi_1) \tag{41}$$

⁵⁰We skip subscript r since we only consider one network.

 $^{^{51}}$ See Section 4.1.1.

where $\mathbf{b}_{\alpha_r}(\mathbf{g}_r, \phi_1)$ is the weighted Katz-Bonacich centrality defined in (5). The Nash equilibrium visit choice of agent *i* is thus

$$y_i^*(x_i, \mathbf{x}_{-i}, \mathbf{g}) = \sum_{j=1}^n m_{ij} \alpha_j = \sum_{j=1}^n \sum_{k=0}^{+\infty} \phi_1^k g_{ij}^{[k]} \alpha_j$$
(42)

where $\mathbf{x}_{-\mathbf{i}}$ is the vector of locations for the other n-1 agents. The Nash equilibrium number of visits $y_i^*(x_i, \mathbf{x}_{-\mathbf{i}}, \mathbf{g})$ depends on position in the social network and geographic location. An agent who is more central in the social network, as measured by her Katz-Bonacich centrality, will make more visits to the interaction center in equilibrium. Intuitively, agents who are better connected have more to gain from interacting with others and so exert higher interaction effort for any vector of geographic locations.

Using the best-response function (see Section 3.1.1), we can write the equilibrium utility level of agent i as:

$$U_{i}(y_{i}^{*}, \mathbf{y}_{-i}^{*}, \mathbf{g}) = w + \frac{1}{2} \left[y_{i}^{*}(x_{i}, \mathbf{x}_{-i}, \mathbf{g}) \right]^{2} = w + \frac{1}{2} \left[b_{\alpha_{i}}(\mathbf{g}, \phi_{1}) \right]^{2}$$
(43)

where $y_i^*(0, \mathbf{x}_{-i}, \mathbf{g})$ and $y_i^*(1, \mathbf{x}_{-i}, \mathbf{g})$ are the equilibrium effort of individual *i* if she lives in the center and in the periphery, respectively.

This was the second stage. In the first stage, each agent i choose to live either in the center $x_i = 0$ or in the periphery $x_i = 1$ anticipating the utility (43) they will obtain at each location. There is an exogenous cost differential c > 0 associated with the central location. Assuming that the center has more economic activity generally, this cost differential might arise from a difference in location land rent from competition among other activities for center locations. The authors totally characterize the subgame-perfect Nash equilibria and show that this characterization depends on c, t, α and the centralities of the agents determined by their m_{ii} and m_{ij} (i.e. their Katz-Bonacich centralities). In particular, more central agents always reside closer to the center than less central agents. If we define a type of an agent by her position in the network (in terms of Katz-Bonacich centrality), then it can be shown that the number of equilibria is equal to the number of types of agents plus one. For example, in a star network, there are two types of agents (the star and the peripheral agent) and thus, depending of the values of the parameters, there will be three equilibria: a Central Equilibrium where all agents live in the center, a Peripheral Equilibrium where all agents live in the periphery, and a Core-Periphery equilibrium where the star live in the center and the peripheral agents reside in the periphery of the city.

An interesting result is that there is much more clustering in the center of the city in denser networks than in sparse networks. This is because there are much more interactions in a denser network and thus it is more beneficial for agents to live in the center and interact with other agents.

4.2 Discussion

In this theoretical presentation, we have seen how the urban space and the social space interact with each other and how they affect the labor-market outcomes of workers. We would like to use this framework to explain the adverse labor-market outcomes of ethnic minorities, especially for black workers in the United States.

If we only consider *neighborhood effects* as in Section 2, then there is an important literature in urban economics showing that distance to jobs is harmful to workers, in particular, black workers. This is a particular form of neighborhood effects, in which the physical location of the neighborhood in relation to jobs, rather than the composition of the neighborhood, generates adverse effects. This is known as the "spatial mismatch hypothesis" (Kain, 1968; Ihlanfeldt and Sjoquist, 1998; Gobillon et al., 2007; Zenou, 2009). In other words, it is because ethnic minorities reside in *neighborhoods* that are disconnected from jobs that they experience high unemployment rates. In the U.S. context, where jobs have been decentralized and blacks have stayed in the central parts of cities, the main conclusion of the spatial mismatch hypothesis is that distance to jobs is the main cause of their high unemployment rates.

If we only consider *network effects* as in Section 3, abstracting from physical space, then it is because ethnic minorities have "low" quality social networks that they experience adverse labor-market outcomes.⁵² This is clearly shown by Calvó-Armengol and Jackson $(2004)^{53}$ where jobs can be found both directly but also through other workers linked to each other in the social network. They show that a steady-state equilibrium with a clustering of workers with the same status is likely to emerge since, in the long run, employed workers tend to be mostly friends with employed workers and the same is true for the unemployed workers. As a result, if because of some initial conditions, black workers are unemployed, then in steady-state they will still be unemployed because both their strong and weak ties will also be unemployed.

⁵²There is strong evidence that indicates that labor-market networks are partly race based, operating more strongly within than across races (Ioannides and Loury, 2004; Hellerstein et al., 2011) and that the social network of black workers is of lower quality than that of whites (Frijters et. al., 2005; Fernandez and Fernandez-Mateo, 2006; Battu et al., 2011).

⁵³See also Calvó-Armengol (2004), Calvó-Armengol and Zenou (2005), Calvó-Armengol and Jackson (2007) and Galenianos (2014).

Here, we argue that both the neighborhood and the social network are important in explaining the high unemployment rates of black workers. Let us explain why by considering the model of Helsley and Zenou (2014) (Section 4.1.3) and interpreting it in the following way. There are two locations, a center, where all jobs are located and all interactions take place, and a periphery. Here an interaction between two individuals means that they exchange job information with each other and thus each visit to the center implies a job-information exchange with someone else. As above, y_i is the number of visits that individual *i* makes to the center in order to obtain information about jobs and each visit results in one interaction. As a result, the higher is the number of interactions, the higher is the quality of job information and the higher is the probability of being employed. There are two types of workers: black and white, and the only difference between them is their position in the network. We assume that whites have a more central position (in terms of Katz-Bonacich centrality) in the network than blacks. This captures the idea of the "old boy network" where whites grew up together, went through school together, socialized together during adolescence and early adulthood, and entered the labor force together (Wial, 1991).

In this interpretation of the model, it is straightforward to see that black workers will make fewer visits to the center and thus will interact less with other workers in the network, in particular, with very central agents such as white workers. Moreover, the black workers will also choose to locate further away from jobs than white workers because they interact less with central workers. At the extreme, we could have an equilibrium where all white workers live in the center of the city while all black workers reside in the periphery. This would imply that whites will interact more with whites and less with black workers. Blacks will interact less and mostly with blacks and thus will have much less information about jobs. This will clearly have dramatic consequences in the labor market and will explain why black workers experience a lower employment rate than white workers. In other words, the *lack of good job contacts would be here a structural consequence of the social isolation of inner-city neighborhoods*. Importantly, the *causality goes from the social space to the geographical space* so that it is the *social mismatch* (i.e. their "bad" location in the geographical space).

We have seen in Section 4.1.2 that the causality can go the other way around. Indeed, in Zenou (2013), it is the spatial mismatch of black workers (due to housing discrimination) that leads to their social mismatch (i.e. less interaction with white weak ties) and thus their adverse labor-market outcomes.

For the policy implications of each model, it is crucial to know the sense of causality. If it

is the geographical space that causes the social mismatch of black workers, then the policies should focus on workers' geographical location, as in the spatial mismatch literature. In that case, *neighborhood regeneration policies* would be the right tool to use. Such policies have been implemented in the US and in Europe through the enterprise zone programs and the empowerment zone programs (e.g. Papke, 1994; Bondonio and Greenbaum, 2007; Ham et al., 2011; Busso et al., 2013). The enterprise zone policy consists in designating a specific urban (or rural) area, which is depressed, and targeting it for economic development through government-provided subsidies to labor and capital.

The aim of the empowerment zone program is to revitalize distressed urban communities and it represents a nexus between social welfare policy and economic development efforts. By implementing these types of policies, one brings jobs to people and thus facilitates the flows of job information in depressed neighborhoods. Another way of reducing the spatial mismatch of black workers would be to implement a transportation policy that subsidizes workers' commuting costs (Pugh, 1998). In the United States, a number of states and counties have used welfare block grants and other federal funds to support urban transportation services for welfare recipients. For example, programs helping job takers (especially African Americans) obtain a used car – a secured loan for purchase, a leasing scheme, a revolving credit arrangement – may offer real promise and help low-skill workers obtain a job by commuting to the center where jobs are located.

If, on the contrary, it is the social space that causes the spatial mismatch of black workers, then the policies should focus on workers' social isolation. Policies that promote social integration and thus increase the interracial interactions between black and white workers would also have positive effects on the labor-market outcomes of minority workers. Such policies, like the Moving to Opportunity (MTO) programs described in Section 2.1.1 have been implemented in the United States. Another way of reducing the unemployment rate of minorities in the context of our model is to observe that *institutional connections* can be engineered to create connections between job seekers and employers in ways that parallel social network processes. For example, scholars like Granovetter (1979) and Wilson (1996) have called for poverty reduction programs to "create connections" between employers and poor and disadvantaged job seekers.⁵⁴

This is ultimately an empirical question of causality – whether people that are central

⁵⁴This is related to the policy issues highlighted in Section 3.3.3 where we were advocating a *group-based policy* for individuals who had preferences according to the *local-average* model and an *individual-based policy* for individuals who had preferences according to the *local-aggregate* model. Clearly, the MTO program, which gives vouchers to individual families is an individual-based policy while the enterprise-zone program is a group-based policy.

in the network move to the city, or do people that are less connected move to the city and then become more central. Such an empirical test is crucial but one would need either a natural experiment with an exogenous shock or convincing instruments to break the sense of causality. In the labor-market interpretation, the key issue is whether black workers first choose to live in geographically isolated neighborhoods (or are forced to live there because of housing discrimination) and then become isolated in the social space because of the lack of contacts with white workers, or do black workers mainly prefer to interact with other black individuals and as a consequence locate in areas where few whites live, which are isolated from jobs. In any case, we believe that the social and the geographical space are intimately related and policies should take into account both of them if they want to be successful.

4.3 Empirical results

Unfortunately, there are very few empirical studies that explicitly test the interactions between the urban and the social space and their impact on the outcomes of individuals. We have seen in Section 2.1.2 that a significant portion of *social interactions with neighbors* are very local in nature – i.e., occur among individuals on the same block.⁵⁵ Bayer et al. (2008) find that residing in the same block raises the probability of sharing the work location by 33%, which is consistent with a social network effect. Similarly, Hellerstein et al. (2011) and Hellerstein et al. (2014) also find that the hiring effect of *residential networks* is significant, and especially strong for Hispanics and less skilled workers, and for smaller establishments. All this evidence highlights the neighborhood-specific nature of social networks, at least in the context of labor market networks. Ananat et al. (2013) find that blacks get a higher return in wages from local agglomeration and human capital spillovers when more of the surrounding workers are black, suggesting that information flows occur along racial lines.

Del Bello et al. (2014) propose one of the few tests that aim to explicitly estimate the effect of the social and geographical space on two outcomes: education and crime. The authors use the AddHealth data described above, which provides information on friendship networks for students in grades 7-12. This dataset also allows the authors to separate students in different census block groups and thus can determine whether two students who are friends (*social space*) also reside in the same neighborhood or not (*geographical space*). They consider two types of peers: *peers at school*, who are peers nominated at school but who do *not* live in the same neighborhood, and *peers in the neighborhood*, who are peers

 $^{^{55}}$ See also Arzaghi and Henderson (2008), Rice et al. (2006) and Rosenthal and Strange (2003, 2008) who show that interaction or agglomeration effects decay very quickly.

nominated at school and also live in the same neighborhood. Using the local-aggregate model of Section 3.2.3, they estimate equation (15), which we rewrite for the sake of the exposition:

$$\mathbf{Y}_r = \phi_1 \mathbf{G}_r \mathbf{Y}_r + \beta \mathbf{X}_r + \gamma \mathbf{G}_r^* \mathbf{X}_r + \eta_r \mathbf{l}_{n_r} + \boldsymbol{\varepsilon}_r,$$

Del Bello et al. (2014) decompose the \mathbf{G}_r matrix so that $\mathbf{G}_r = \mathbf{G}_{r,S} + \mathbf{G}_{r,N}$, where $\mathbf{G}_{r,S}$ only keeps track of peers at school in network r while $\mathbf{G}_{r,N}$ accounts for peers in the neighborhood in network r. Thus, the model estimated is:

$$\mathbf{Y}_{r} = \phi_{1S} \mathbf{G}_{r,S} \mathbf{Y}_{r} + \phi_{1,N} \mathbf{G}_{r,N} \mathbf{Y}_{r} + \beta \mathbf{X}_{r} + \gamma_{S} \mathbf{G}_{r,S}^{*} \mathbf{X}_{r} + \gamma_{N} \mathbf{G}_{r,N}^{*} \mathbf{X}_{r} + \eta_{r} \mathbf{l}_{n_{r}} + \boldsymbol{\varepsilon}_{r}, \qquad (44)$$

As in Section 3.2.3, the authors can estimate this equation using the characteristics of friends of friends as instruments for the endogenous peer effects and network fixed effects. However, as stated in Section 3.2.5, this empirical strategy only works if $\mathbf{G}_{r,S}$ and $\mathbf{G}_{r,N}$ are conditionally exogenous. If students sort themselves into neighborhood and then into friendships according to some unobserved characteristics correlated with the error term, peer effects ϕ_{1S} and $\phi_{1,N}$ in (44) are not identified. In order to address this issue, following the discussion in Section 3.2.5, the authors simultaneously estimate equation (44), the outcome equation, and equation (21), the network-formation equation.

Del Bello et al. (2014) find that the effect of peers (friends) on own education (measured by the average GPA of the student) are strong for both *peers at school* and *peers in the neighborhood*, although the effect of school friends is more than twice that of neighborhood peers. They obtain the opposite for the crime outcome, where only *peers in the neighborhood* appear to exhibit an endogenous multiplier effect on criminal activity. This suggests that friends at school (social space) are key for educational outcomes while friends residing in the same neighborhood (social and geographical space) are the most important determinant of own criminal activities.

These results are important in light of our policy discussion in Section 4.2. According to these results, it seems that a key-player policy (see Section 3.3.3) as well as neighborhood policies (such as the neighborhood regeneration policies mentioned in Section 4.2) are crucial in reducing juvenile crime while group-based policies at the school level such as the *charter-school* or *boarding-school* policies mentioned in Section 3.3.3 are the most efficient ones for improving education for young students.

5 Concluding remarks

In this chapter, we have reviewed the literatures on neighborhood effects, network effects and neighborhood and network effects. We have seen that, for the experimental evidence based on relocations or resettlements of individuals, the neighborhood effects are quite limited in the United States and Canada while they are important in Europe, especially in the Scandinavian countries. In the latter, we showed that ethnic enclaves can have positive effects on labormarket outcomes and education of immigrants, both in Sweden and Denmark, especially for the less-skilled ones. Unfortunately, they seem to also have a positive effect on crime since growing up in a neighborhood with many criminals have a long-term effect on crime for immigrants. Interestingly, when we look at non-experimental evidence at the city block in the United States then there are strong neighborhood effects since workers who co-reside in the same city block are more likely to work together compared to residents in nearby blocks. In other words, a significant portion of interactions with neighbors are very local in nature, i.e., they occur among individuals on the same block. This effect is especially strong for neighbors within the same racial or ethnic group. We also discussed the structural approach to the estimation of neighborhood effects: here the literature finds evidence of important neighborhood effects for crime and in the labor market.

We then turned to network effects and only focused on studies for which the network was explicitly studied and modeled as a graph. We mainly exposed (quasi) structural approaches where a model was first written and then tested. For that, we first developed a simple model where agents embedded in a network choose efforts in some activity (education, crime, labor, etc.) where the network is given,⁵⁶ the utility is linear quadratic and there are strategic complementarities in efforts. In one version of the model, the network effects of each individual *i* are captured by the sum of efforts of the agents who are directly connected to *i* (local-aggregate model) and, in the other, they are captured by the distance to the social norm from each agent *i* (local-average model). We calculated the Nash equilibrium of each of these models and showed the importance of the position in the network on the outcomes of the agents. We then discussed the different empirical tests based on these models and their identification strategies. The results indicate that there are very strong network effects in different activities (education, crime, health, etc.) and that policies should take into account which model is more appropriate in the data. One interesting policy is the key-player policy which aims to target an agent in a network in order to maximize total activity or welfare.

 $^{^{56}}$ There is an important literature on network formation that we do not survey here because these models are usually plagued by multiple equilibria, which are clearly difficult to test empirically. See Jackson (2008) for an overview.

In the last part of this chapter, we studied the interaction between neighborhood and network effects. We first developed some models where the urban and the social space are integrated, and analyzed how the interaction between these two spaces affects the labormarket outcomes of workers, especially ethnic minorities. We then turned to the empirical tests and found that very few studies include both spaces in their analysis. This is clearly what should be done in the future since we are starting to have better data that can encompass both spaces. This will be very important for policies since it will help us understand the relative role of neighborhood versus peer and network effects on outcomes such as crime, education and labor.

References

- Abowd, J.M., Kramarz, F. and D.N. Margolis (1999), "High wage workers and high wage firms," *Econometrica* 67, 251-333.
- [2] Aguirregabiria, V. and P. Mira (2007), "Sequential estimation of dynamic discrete games," *Econometrica* 75, 1-53.
- [3] Ainsworth-Darnell, J.W. and D.B. Downey (1998), "Assessing the oppositional culture explanation for racial/ethnic differences in school performance," *American Sociological Review* 63, 536-553.
- [4] Akerlof, G.A. (1997), "Social distance and social decisions," *Econometrica* 65, 1005-1027.
- [5] Allouch, N. (2012), "On the private provision of public goods on networks," Nota di Lavoro 14.2012, Fondazione Eni Enrico Mattei.
- [6] Ananat, E., Fu, S. and S.L. Ross (2013), "Race-specific agglomeration economies: Social distance and the black-white wage gap," NBER Working Papers 18933.
- [7] Angrist, J.D., Dynarski, S.M., Kane, T.J., Pathak, P.A. and C.R. Walters (2010), "Inputs and impacts in charter schools: KIPP Lynn," *American Economic Review Papers and Proceedings* 100, 239-243.
- [8] Angrist, J.D., Dynarski, S.M., Kane, T.J., Pathak, P.A. and C.R. Walters (2012),
 "Who benefits from KIPP?" Journal of Policy Analysis and Management 31, 837-860.

- [9] Åslund, O., Edin, P.-A., Fredriksson, P. and H. Grönqvist (2011), "Peers, neighborhoods, and immigrant student achievement: Evidence from a placement policy," *American Economic Journal: Applied Economics* 3, 67-95.
- [10] Åslund, O., Östh, J. and Y. Zenou (2010), "How crucial is distance to jobs for ethnic minorities? Old question – Improved answer," *Journal of Economic Geography* 10, 389-422.
- [11] Angelucci, M., De Giorgi, G. and I. Rasul (2014), "Resource pooling within family networks: Insurance and investment," Unpublished manuscript, University of College London.
- [12] Anselin, L. (1988), Spatial Econometrics: Methods and Models, Dordrecht: Kluwer Academic Publishers.
- [13] Arzaghi, M. and J.V. Henderson (2008), "Networking off Madison Avenue," *Review of Economic Studies* 75, 1011-1038.
- [14] Austen-Smith D. and R.D. Fryer, Jr (2005), "An economic analysis of 'acting white'," Quarterly Journal of Economics 120, 551-583.
- [15] Ballester, C., Calvó-Armengol, A. and Y. Zenou (2006), "Who's who in networks. Wanted: the key player," *Econometrica* 74, 1403-1417.
- [16] Ballester, C., Calvó-Armengol, A. and Y. Zenou (2010), "Delinquent networks," Journal of the European Economic Association 8, 34-61.
- [17] Ballester, C. and Y. Zenou (2014), "Key player policies when contextual effects matter", Journal of Mathematical Sociology, forthcoming
- [18] Banerjee, A., Chandrasekhar, A.G., Duflo, E. and M.O. Jackson (2013), "The diffusion of microfinance," *Science* 341, 6144.
- [19] Battu, H. McDonald, M. and Y. Zenou (2007), "Oppositional identities and the labor market," *Journal of Population Economics* 20, 643-67.
- [20] Battu, H., Seaman, P. and Y. Zenou (2011), "Job contact networks and the ethnic minorities," *Labour Economics* 18, 48-56.
- [21] Battu, H. and Y. Zenou (2010), "Oppositional identities and employment for ethnic minorities. Evidence for England," *Economic Journal* 120, F52-F71.

- [22] Bayer, P., Ferreira, F. and R. McMillan (2007), "A unified framework for measuring preferences for schools and neighborhoods," *Journal of Political Economy* 115, 588-638.
- [23] Bayer, P., Ross, S.L. and G. Topa (2008), "Place of work and place of residence: Informal hiring networks and labor market outcomes," *Journal of Political Economy* 116, 1150-1196.
- [24] Beaman, L. (2012), "Social networks and the dynamics of labor market outcomes: Evidence from refugees resettled in the U.S.," *Review of Economic Studies* 79, 128-161.
- [25] Beckmann, M.J. (1976), "Spatial equilibrium and the dispersed city," In: Y.Y. Papageorgiou (Ed.), *Mathematical Land Use Theory*, Lexington, MA: Lexington Books, pp. 117-125.
- [26] Benhabib, J., Bisin, A. and M.O. Jackson (2011), Handbook of Social Economics Vol. 1 and 2, Amsterdam: Elsevier Science.
- [27] Berliant, M., Peng, S.-K. and P. Wang (2002), "Production externalities and urban configuration," *Journal of Economic Theory* 104, 275-303.
- [28] Bernheim, B.D. (1994), "A theory of conformity," Journal of Political Economy 102, 841-877.
- [29] Bifulco, R., Fletcher, J.M. and S.L. Ross (2011), "The effect of classmate characteristics on post-secondary outcomes: Evidence from the Add Health," *American Economic Journal: Economic Policy* 3, 25-53.
- [30] Bisin, A., Moro, A. and G. Topa (2011), "The empirical content of models with multiple equilibria in economies with social interactions," NBER Working Paper No. 17196.
- [31] Bisin, A., Patacchini, E., Verdier, T. and Y. Zenou (2011), "Formation and persistence of oppositional identities," *European Economic Review* 55, 1046-1071.
- [32] Black, S. E. (1999), "Do better schools matter? Parental valuation of eElementary education," *Quarterly Journal of Economics* 114, 57-99.
- [33] Blume, L.E., Brock, W.A., Durlauf, S.N. and Y.M. Ioannides (2011), "Identification of social interactions," In: J. Benhabib, A. Bisin, and M.O. Jackson (Eds.), *Handbook* of Social Economics, Amsterdam: Elsevier Science.

- [34] Bondonio, D. and R.T. Greenbaum (2007), "Do local tax incentives affect economic growth? What mean impact miss in the analysis of enterprise zone policies," *Regional Science and Urban Economics* 37, 121-136.
- [35] Bonacich P. (1987), "Power and centrality: A family of measures," American Journal of Sociology 92, 1170-1182.
- [36] Bond, T.N. and K. Lang (2014), "The sad truth about happiness scales," NBER Working Paper No. 19950.
- [37] Borukhov, E. and O. Hochman (1977), "Optimum and market equilibrium in a model of a city without a predetermined center," *Environment and Planning A* 9, 849-856.
- [38] Boucher, V., Bramoullé, Y., Djebbari, H., and B. Fortin (2014), "Do peers affect student achievement? Evidence from Canada using group size variation," *Journal of Applied Econometrics* 29, 91-109.
- [39] Boustant, L.P. (2010), "Was postwar suburbanization white flight? Evidence from the black migration," *Quarterly Journal of Economics* 125, 417-443.
- [40] Bramoullé, Y., Djebbari, H. and B. Fortin (2009), "Identification of peer effects through social networks," *Journal of Econometrics* 150, 41-55.
- [41] Bramoullé, Y. and R. Kranton (2007), "Public goods in networks," Journal of Economic Theory 135, 478-494.
- [42] Bramoullé, Y., Kranton, R. and M. D'Amours (2014), "Strategic interaction and networks," American Economic Review 104, 898-930.
- [43] Brock, W. and S.E. Durlauf (2001), "Discrete choice models with social interactions," *Review of Economic Studies* 68, 235-260.
- [44] Brooks-Gunn, J., G. Duncan, P. Klebanov and N. Sealand (1992), "Do neighborhoods influence child and adolescent development?", *American Journal of Sociology* 99, 353-395.
- [45] Brooks-Gunn, J., Duncan, G. J., Aber, J. L. (Eds.) (1997), Neighborhood Poverty: Context and consequences for children (Volume 1). Policy implications in studying neighborhoods (Volume 2). New York, NY: Russell Sage Foundation.

- [46] Brown, M., Setren, E. and G. Topa (2014), "Do informal referrals lead to better matches? Evidence from a firm's employee referral system," Unpublished manuscript, Federal Reserve Bank of New York.
- [47] Brueckner, J.K. and A.G. Largey (2008), "Social interactions and urban sprawl," Journal of Urban Economics 64, 18-34.
- [48] Brueckner, J.K., Thisse, J-F. and Y. Zenou (2002), "Local labor markets, job matching and urban location," *International Economic Review* 43, 155-171.
- [49] Busso, M., Gregory, J. and P. Kline (2013), "Assessing the incidence and efficiency of a prominent place based policy," *American Economic Review* 103, 897-947.
- [50] Calvó-Armengol, A. (2004), "Job contact networks," Journal of Economic Theory 115, 191-206.
- [51] Calvó-Armengol, A. and M.O. Jackson (2004), "The effects of social networks on employment and inequality," *American Economic Review* 94, 426-454.
- [52] Calvó-Armengol, A and M.O. Jackson (2007), "Networks in labor markets: Wage and employment dynamics and inequality," *Journal of Economic Theory* 132, 27-46.
- [53] Calvó-Armengol, A., E. Patacchini, and Y. Zenou (2009), "Peer effects and social networks in education," *Review of Economic Studies* 76, 1239-1267.
- [54] Calvó-Armengol, A., Verdier, T. and Y. Zenou (2007), "Strong and weak ties in employment and crime," *Journal of Public Economics* 91, 203-233.
- [55] Calvó-Armengol, A. and Y. Zenou (2004), "Social networks and crime decisions. The role of social structure in facilitating delinquent behavior," *International Economic Review* 45, 939-958.
- [56] Calvó-Armengol, A. and Y. Zenou (2005), "Job matching, social network and wordof-mouth communication," *Journal of Urban Economics* 57, 500-522.
- [57] Campbell, J.Y., Giglio, S. and P. Pathak (2011), "Forced sales and house prices," *American Economic Review* 101, 2108-2131.
- [58] Carrell, S.E., Fullerton, R.L. and J.E. West (2009), "Does your cohort matter? Estimating peer effects in college achievement," *Journal of Labor Economics* 27, 439-464.

- [59] Carrell, S.E., Sacerdote, B.I. and J.E. West (2013), "From natural variation to optimal policy? The importance of endogenous peer group formation," *Econometrica* 81, 855-882.
- [60] Centola, D. (2010), "The spread of behavior in an online social network experiment," Science 329, 1194-1197.
- [61] Chandrasekhar, A.G. and M.O. Jackson (2013), "Tractable and consistent random graph models," Unpublished manuscript, Stanford University.
- [62] Charness, G., F. Feri, M.A. Meléndez-Jiménez and M. Sutter (2014), "Experimental games on networks: Underpinnings of behavior and equilibrium selection," *Econometrica*, forthcoming.
- [63] Cohen-Cole, E. (2006), "Multiple groups identification in the linear-in-means model," *Economics Letters* 92, 157-162.
- [64] Comola, M. and S. Prina (2014), "Do interventions change the network? A dynamic peer effect model accounting for network changes," Unpublished manuscript, Paris School of Economics.
- [65] Conley, T.G. and G. Topa (2002), "Socio-Economic Distance and Spatial Patterns in Unemployment," *Journal of Applied Econometrics* Vol. 17 (4), 303-327.
- [66] Conley, T.G. and G. Topa (2007), "Estimating dynamic local interactions models," *Journal of Econometrics* 140, 282-303.
- [67] Conley, T.G. and C.R. Udry (2010), "Learning about a new technology: Pineapple in Ghana," American Economic Review 100, 35-69.
- [68] Christakis, N., Fowler, J., Imbens, G. and K. Kalyanaraman (2010), "An empirical model for strategic network formation," NBER Working Paper No. 16039.
- [69] Corcoran, M., Gordon, R., Laren, D. and G. Solon (1989), "Effects of family and community background on men's economic status," NBER Working Paper no. 2896.
- [70] Curto, V.E. and R.G. Fryer Jr. (2014), "The potential of urban boarding schools for the poor: Evidence from SEED," *Journal of Labor Economics* 32, 65-93.
- [71] Damm, A.P. (2009), "Ethnic enclaves and immigrant labor market outcomes: Quasiexperimental evidence," *Journal of Labor Economics* 27, 281-314.

- [72] Damm, A.P. (2014), "Neighborhood quality and labor market outcomes : Evidence from quasi-random neighborhood assignment of immigrants," *Journal of Urban Economics* 79, 139-166.
- [73] Damm, A.P. and C. Dustmann (2014), "Does growing up in a high crime neighborhood affect youth criminal behavior?" *American Economic Review* 104, 1806-1832.
- [74] Datcher, L. (1983), "The impact of informal networks on quit behavior," Review of Economics and Statistics 65, 491-495.
- [75] De Giorgi, G., Pellizzari, M. and S. Redaelli (2010), "Identification of social interactions through partially overlapping peer groups," *American Economic Journal: Applied Economics* 2, 241-275.
- [76] De Giorgi, G., Frederiksen, A. and L. Pistaferri (2014), "Consumption network effects," Unpublished manuscript, Stanford University.
- [77] Del Bello, C.L., Patacchini, E. and Y. Zenou (2014), "Peer effects: Social distance or geographical distance?" Unpublished manuscript, Stockholm University.
- [78] Delpit, L. (1995), Other People's Children: Cultural Conflict in the Classroom, New York: The Free Press.
- [79] De Martí, J. and Y. Zenou (2011), "Social networks," In: I. Jarvie and J. Zamora-Bonilla (Eds.), *Handbook of Philosophy of Social Science*, London: SAGE Publications, pp. 339-361.
- [80] De Martí, J. and Y. Zenou (2012), "Friendship formation, oppositional identity, and segregation", CEPR Discussion Paper No. 7566.
- [81] Duranton, G. and D. Puga (2004), "Micro-foundations of urban agglomeration economies," In: J.-F. Thisse and J.V. Henderson (Eds.), *Handbook of Regional and* Urban Economics, Vol. 4, Amsterdam: Elsevier Science, pp. 2063-2117.
- [82] Durlauf, S. (2004), "Neighborhood effects," In: J.-F. Thisse and J.V. Henderson (Eds.), Handbook of Regional and Urban Economics, Vol. 4, Amsterdam: Elsevier Science, pp. 2173-2242.
- [83] Dustmann, C., Glitz, A. and U. Schoenberg (2011), "Referral-based job search networks," Unpublished manuscript, University College London.

- [84] Edin, P.-A., Fredriksson, P. and O. Aslund (2003), "Ethnic enclaves and the economic success of immigrants: Evidence from a natural experiment," *Quarterly Journal of Economics* 118, 329-357.
- [85] Fernandez, R.M. and I. Fernandez-Mateo (2006), "Networks, race, and hiring," American Sociological Review 71, 42-71.
- [86] Fershtman, C., and Y. Weiss. (1998), "Social rewards, externalities and stable preferences," *Journal of Public Economics* 70, 53-73.
- [87] Fletcher, J.M. (2010), "Social interactions and smoking: Evidence using multiple student cohorts, instrumental variables, and school fixed effects," *Health Economics* 19, 466-484.
- [88] Fletcher, J.M. (2012), "Peer influences on adolescent alcohol consumption: Evidence using an instrumental variables/fixed effect approach," *Journal of Population Economics* 25, 1265-1286.
- [89] Fletcher, J.M. and S.L. Ross (2012), "Estimating the effects of friendship networks on health behaviors of adolescents," NBER Working Paper No. 18253.
- [90] Fletcher, J.M., Ross, S.L. and Y. Zhang (2013), "The determinants and consequences of friendship formation," NBER Working Paper No. 19215.
- [91] Fordham, S. and J.U. Ogbu, (1986), "Black student'school success: Coping with the burden of 'acting white'," Urban Review 18, 176-206.
- [92] Frijters, P., Shields, M.A. and S. Wheatley Price (2005), "Job search methods and their success: A comparison of immigrants and natives in the UK," *Economic Journal* 115, F359-F376.
- [93] Fryer Jr., R.G. and Torelli, P. (2010), "An empirical analysis of 'acting white'," Journal of Public Economics 94, 380-396.
- [94] Fujita, M. (1989), Urban Economic Theory: Land Use and City Size, Cambridge: Cambridge University Press.
- [95] Fujita,M. and H. Ogawa (1982), "Multiple equilibria and structural transition of nonmonocentric urban configurations," *Regional Science and Urban Economics* 12, 161-196.

- [96] Fujita, M. and J.-F. Thisse (2013), Economics of Agglomeration: Cities, Industrial Location, and Regional Growth, Second edition, Cambridge: Cambridge University Press.
- [97] Galenianos, M. (2013), "Learning about match quality and the use of referrals," *Review* of *Economic Dynamics* 16, 668-690.
- [98] Galenianos, M. (2014), "Hiring through referrals," Journal of Economic Theory 152, 304-323.
- [99] Glaeser, E.L. Sacerdote, B. and J. Scheinkman (1996), "Crime and social interactions," *Quarterly Journal of Economics* 111, 508-548.
- [100] Glaeser, E. and J.A. Scheinkman (2001), "Measuring social interaction," In: S. Durlauf and P. Young (Eds.), *Social Dynamics*, Cambridge, MA: Brookings Institution Press and MIT Press.
- [101] Gobillon, L., Selod, H. and Y. Zenou (2007), "The mechanisms of spatial mismatch," Urban Studies 44, 2401-2427.
- [102] Goldsmith-Pinkham, P. and G.W. Imbens (2013), "Social networks and the identification of peer effects," *Journal of Business and Economic Statistics* 31, 253-264.
- [103] Gould, E.D., Lavy, V. and D. Paserman (2011), "Sixty years after the magic carpet ride: The long-run effect of the early childhood environment on social and economic outcomes," *Review of Ecoconomic Studies* 78, 938-973.
- [104] Goyal, S. (2007), Connections: An Introduction to the Economics of Networks, Princeton: Princeton University Press.
- [105] Granovetter, M.S. (1973), "The strength of short-lived ties," American Journal of Sociology 78, 1360-1380.
- [106] Granovetter, M.S. (1974), Getting a Job: A Study of Contacts and Careers, Cambridge, MA: Harvard University Press.
- [107] Granovetter, M.S. (1979), "Placement as brokerage: Information problems in the labor market for rehabilitated workers," In: D. Vandergoot, J.D. Worrall (Eds.), *Placement* in Rehabilitation: A Career Development Perspective, University Park Press, pp. 83-101.

- [108] Granovetter, M.S. (1983), "The strength of short-lived ties: A network theory revisited," Sociological Theory 1, 201-233.
- [109] Guest, A.M. and B.A. Lee (1983), "The social organization of local areas," Urban Affairs Quarterly 19, 217-240.
- [110] Ham, J.C., Swenson, C., Imrohoroglu, A. and H. Song (2011), "Government programs can improve local labor markets: Evidence from State Enterprise Zones, Federal Empowerment Zones and Federal Enterprise Community," *Journal of Public Economics* 95, 779-797.
- [111] Hahn, J., Todd, P. and W. van der Klaauw (2001), "Identification and estimation of treatment effects with a regression-discontinuity design," *Econometrica* 69, 201-209.
- [112] Harding, J.P., Rosenblatt, E. and V.W.Yao (2009), "The contagion effect of foreclosed properties," *Journal of Urban Economics* 66, 164-178.
- [113] Hawranek, F. and N. Schanne (2014), "Your very private job agency: Job referrals based on residential location networks," IAB Discussion Paper No. 1/2014, The Research Institute of the German Federal Employment Agency.
- [114] Hellerstein, J.K., M.P. McInerney and D. Neumark (2011), "Neighbors and co-workers: The importance of residential labor market networks," *Journal of Labor Economics* 29, 659-695.
- [115] Hellerstein, J.K., Kutzbach, M.J. and D. Neumark (2014), "Do labor market networks have an important spatial dimension?" *Journal of Urban Economics* 79, 39-58.
- [116] Helmers, C. and M. Patnam (2014), "Does the rotten child spoil his companion? Spatial peer effects among children in rural India," *Quantitative Economics* 5, 67-121.
- [117] Helsley, R.W. (1990), "Knowledge production in the CBD," Journal of Urban Economics 28, 391-403.
- [118] Helsley, R.W. and W.C. Strange (2007), "Urban interactions and spatial structure," Journal of Economic Geography 7, 119-138.
- [119] Helsley, R.W. and Y. Zenou (2014), "Social networks and interactions in cities," Journal of Economic Theory 150, 426-466.

- [120] Ihlanfeldt, K.R. and D. Sjoquist (1998), "The spatial mismatch hypothesis: A review of recent studies and their implications for welfare reform," *Housing Policy Debate* 9, 849-892.
- [121] Ioannides, Y.M. (2003), "Interactive property valuations," Journal of Urban Economics 53, 145-170.
- [122] Ioannides, Y.M. (2012), From Neighborhoods to Nations: The Economics of Social Interactions, Princeton: Princeton University Press.
- [123] Ioannides, Y.M. and L. Datcher-Loury (2004), "Job information networks, neighborhood effects and inequality," *Journal of Economic Literature* 424, 1056-1093.
- [124] Ioannides, Y.M. and G. Topa (2010), "Neighborhood effects: Accomplishments and looking beyond them," *Journal of Regional Science* 50, 343-362.
- [125] Jackson M.O. (2003), "The stability and efficiency of economic and social networks," In: S. Koray and M. Sertel (Eds.), Advances in Economic Design, Heidelberg: Springer-Verlag, pp. 319-362.
- [126] Jackson M.O. (2004), "A survey of models of network formation: stability and efficiency," In: G. Demange and M. Wooders (Eds.), Group Formation in Economics. Networks, Clubs and Coalitions, Cambridge, UK: Cambridge University Press, pp. 11-57.
- [127] Jackson M.O. (2005), "The economics of social networks," In: R. Blundell, W. Newey and T. Persson (Eds.), *Proceedings of the 9th World Congress of the Econometric Society*, Cambridge, UK: Cambridge University Press, pp. 1-56.
- [128] Jackson, M.O. (2007), "Social structure, segregation, and economic behavior," Nancy Schwartz Memorial Lecture.
- [129] Jackson M.O. (2008), Social and Economic Networks, Princeton, NJ: Princeton University Press.
- [130] Jackson, M.O. (2011), "An overview of social networks and economic applications," In: J. Benhabib, A. Bisin and M.O. Jackson (Eds.), *Handbook of Social Economics Volume 1A*, Amsterdam: Elsevier Science, pp. 511-579.

- [131] Jackson, M.O. (2013), "Unraveling peers and peer effects: Comments on Goldsmith-Pinkham and Imbens' "Social Networks and the Identification of Peer Effects"," Journal of Business and Economic Statistics 31 270-273.
- [132] Jackson, M.O. and B.W. Rogers (2005), "The economics of small worlds," Journal of the European Economic Association 3, 617-627..
- [133] Jackson, M.O., Rogers, B.W. and Y. Zenou (2014), "The impact of social networks on economic behavior," SSRN Working Paper 2467812.
- [134] Jackson, M.O and A. Wolinsky (1996), "A strategic model of social and economic networks," *Journal of Economic Theory* 71, 44-74.
- [135] Jackson, M.O. and L. Yariv (2011), "Diffusion, strategic interaction, and social structure," In: J. Benhabib, A. Bisin and M.O. Jackson (Eds.), Handbook of Social Economics Volume 1A, Amsterdam: Elsevier Science, 645-678.
- [136] Jackson, M.O. and Y. Zenou (2013), Economic Analyses of Social Networks, The International Library of Critical Writings in Economics, London: Edward Elgar Publishing.
- [137] Jackson, M.O. and Y. Zenou (2014), "Games on networks", In: P. Young and S. Zamir (Eds.), Handbook of Game Theory, Vol. 4, Amsterdam: Elsevier Publisher, pp. 91-157.
- [138] Jacob, B.A. (2004), "Public housing, housing vouchers, and student achievement: Evidence from public housing demolitions in Chicago," *American Economic Review* 94, 233-258.
- [139] Jencks, C. and S.E. Mayer (1990), "The social consequences of growing up in a poor neighborhood," In: L. Lynn and M. McGeary (Eds.), *Inner-City Poverty in the United States*, Washington, D.C: National Academy Press, pp. 111-186.
- [140] Johnson, C. and R.P. Gilles (2000), "Spatial social networks," Review of Economic Design 5, 273-299.
- [141] Kain, J. (1968), "Housing segregation, negro employment, and metropolitan decentralization," Quarterly Journal of Economics 82, 175-197.
- [142] Kandel, E. and, E.P. Lazear. (1992), "Peer pressure and partnerships," Journal of Political Economy 100, 801-817.

- [143] Katz, L. (1953), "A new status index derived from sociometric analysis," Psychometrika 18, 39-43.
- [144] Kelejian, H.H. (2008), "A spatial J-test for model specification against a single or a set of nonnested alternatives," *Letters in Spatial and Resources Sciences* 1, 3-11.
- [145] Kelejian, H.H. and G. Piras (2014), "Estimation of spatial models with endogenous weighting matrices, and an application to a demand model for cigarettes," *Regional Science and Urban Economics* 46, 140-149.
- [146] Kleiman, M.A. (2009), When Brute Force Fails. How to Have Less Crime and Less Punishment, Princeton: Princeton University Press.
- [147] Kling, J.R., Ludwig, J. and L.F. Katz (2005), "Neighborhood effects on crime for female and male youth: Evidence from a randomized housing voucher experience," *Quarterly Journal of Economics* 120, 87-130.
- [148] Kling, J.R., Liebman, J.B. and L.F. Katz (2007), "Experimental analysis of neighborhood effects," *Econometrica* 75, 83-119.
- [149] Kosfeld, M. (2004), "Economic networks in the laboratory: A survey," Review of Network Economics 30, 20-42.
- [150] Konig, M.D., Liu, X. and Y. Zenou (2014a), "R&D networks: Theory, empirics and policy implications," CEPR Discussion Paper No. 9872.
- [151] König, M., Tessone, C. and Y. Zenou (2014b), "Nestedness in networks: A theoretical model and some applications," *Theoretical Economics*, forthcoming.
- [152] Lee, L.F. (2007), "Identification and estimation of econometric models with group interactions, contextual factors and fixed effects," *Journal of Econometrics* 140, 333-374.
- [153] Lee, B.A. and K.E. Campbell (1999), "Neighbor networks of black and white Americans", In: B. Wellman (Ed.), Networks in the Global Village: Life in Contemporary Communities, Boulder, CO.: Westview Press, pp. 119-146.
- [154] Lee, L.F., Liu, X. and X. Lin (2010), "Specification and estimation of social interaction models with network structures," *Econometrics Journal* 13, 145-176.
- [155] Lin, X. (2010), "Identifying peer effects in student academic achievement by a spatial autoregressive model with group unobservables," *Journal of Labor Economics* 28, 825-860.
- [156] Lindquist, M.J. and Y. Zenou (2014), "Key players in co-offending networks," CEPR Discussion Paper No. 9889.
- [157] Liu, X. and L.F. Lee (2010), "GMM estimation of social interaction models with centrality," *Journal of Econometrics* 159, 99-115.
- [158] Liu, X., Patacchini, E., Zenou, Y. and L-F. Lee (2012), "Criminal networks: Who is the key player?" CEPR Discussion Paper No. 8772.
- [159] Liu, X., Patacchini, E. and Y. Zenou (2013), "Peer effects: Social multiplier or social norms?" CEPR Discussion Paper No. 9366.
- [160] Liu, X., Patacchini, E. and Y. Zenou (2014), "Endogenous peer effects: Local aggregate or local average?" Journal of Economic Behavior and Organization 103, 39-59.
- [161] Lucas, R. and E. Rossi-Hansberg (2002), "On the internal structure of cities," *Econo*metrica 70, 1445-1476.
- [162] Ludwig, J., Duncan, G.J. and P. Hirschfield (2001), "Urban poverty and juvenile crime: Evidence from a randomized housing-mobility experiment," *Quarterly Journal of Economics* 116, 655-679.
- [163] Ludwig, J., Duncan, G.J., Gennetian, L.A., Katz, L.F., Kessler, R.C., Kling, J.R. and L. Sanbonmatsu (2012), "Neighborhood effects on the long-term well-being of low-income adults," *Science* 337, 1505.
- [164] Manski, C.F. (1993), "Identification of endogenous effects: The reflection problem," *Review of Economic Studies* 60, 531-542.
- [165] Manski, C.F. (2000), "Economic analysis of social interactions," Journal of Economic Perspectives 14, 115-136.
- [166] Mele, A. (2013), "A structural model of segregation in social networks," Unpublished manuscript, Johns Hopkins Carey Business School.

- [167] Moffitt, R. (2001), "Policy interventions low-level equilibria, and social interactions," In: S. Durlauf and P. Young (Eds.), *Social Dynamics*, Cambridge, MA: MIT Press, pp. 45-82.
- [168] Montgomery, J.D. (1994), "Weak ties, employment, and inequality: An equilibrium analysis," American Journal of Sociology 99, 1212-1236.
- [169] Moro, A. (2003), "The effect of statistical discrimination onblack-white wage inequality: Estimating a model with multiple equilibria," *International Economic Review* 44, 457-500.
- [170] Mossay, P. and P.M. Picard (2011), "On spatial equilibria in a social interaction model," *Journal of Economic Theory* 146, 2455-2477.
- [171] Mossay, P. and P.M. Picard (2013), "Spatial segregation and urban structure," CREA Discussion Paper Series 13-03, Center for Research in Economic Analysis, University of Luxembourg.
- [172] Mouw, T. and B. Entwisle (2006), "Residential segregation and interracial friendship in schools," *American Journal of Sociology* 112, 394-441.
- [173] Ogawa, H. and M. Fujita (1980), "Equilibrium land use patterns in a non-monocentric city," *Journal of Regional Science* 20, 455-475.
- [174] Oreopoulous, P. (2003), "The long-run consequences of living in a poor neighborhood," Quarterly Journal of Economics 118, 1533-1575.
- [175] Ota, M. and M. Fujita (1993), "Communication technologies and spatial organization of multi-unit firms in metropolitan areas," *Regional Science and Urban Economics* 23, 695-729.
- [176] Otani, S. (1999), "Personal community networks in contemporary Japan," In: B. Wellman (Ed.), Networks in the Global Village: Life in Contemporary Communities, Boulder, CO.: Westview Press, pp. 279-297.
- [177] Papageorgiou, Y.Y. and T.R. Smith (1983), "Agglomeration as local instability of spatially uniform steady states," *Econometrica* 51, 1109-1119.
- [178] Papke, L. (1994), "Tax policy and urban development: evidence from the Indiana enterprise zone program," *Journal of Public Economics* 54, 37-49.

- [179] Patacchini, E., Rainone, E. and Y. Zenou (2014), "Heterogeneous peer effects in education," CEPR Discussion Paper No. 9804.
- [180] Patacchini, E. and Y. Zenou (2008), "The strength of weak ties in crime," European Economic Review 52, 209-236.
- [181] Patacchini, E. and Y. Zenou (2012a), "Ethnic networks and employment outcomes," *Regional Science and Urban Economics* 42, 938-949.
- [182] Patacchini, E. and Y. Zenou (2012b), "Juvenile delinquency and conformism," Journal of Law, Economics, and Organization 28, 1-31.
- [183] Patacchini, E. and Y. Zenou (2014), "Social networks and parental behavior in the intergenerational transmission of religion," Unpublished manuscript, Stockholm University.
- [184] Picard, P.M. and Y. Zenou (2014), "Urban spatial structure, employment and social ties," CEPR Discussion Paper No. 10030.
- [185] Popkin, S.J., J.E. Rosenbaum and P.M. Meaden. (1993), "Labor market experiences of low-income black women in middle-class suburbs: Evidence from a survey of Gautreaux program participants," *Journal of Policy Analysis and Management* 12, 556-573.
- [186] Pugh, M. (1998), "Barriers to work: the spatial divide between jobs and welfare recipients in metropolitan areas," The Brookings Institution.
- [187] Rice, P., Venables A.J. and E. Patacchini (2006), "Spatial determinants of productivity: Analysis for the regions of Great Britain," *Regional Science and Urban Economics* 36, 727-752.
- [188] Rosenthal S.S. and W. Strange (2003), "Geography, industrial organization and agglomeration," *Review of Economics and Statistics* 85, 178-188.
- [189] Rosenthal S.S. and W. Strange (2008), "The attenuation of human capital spillovers," Journal of Urban Economics 64, 373-389.
- [190] Rossi-Hansberg, E., Sarte, P.-D. and R. Owens III (2010), "Housing externalities," *Journal of Political Economy* 118, 485-535.
- [191] Sacerdote, B. (2001), "Peer effects with random assignment: Results from Dartmouth roomates," *Quarterly Journal of Economics* 116, 681-704.

- [192] Sato, Y. and Y. Zenou (2014), "How urbanization affect employment and social interactions", CEPR Discussion Paper No. 9805.
- [193] Schmutte, I.M. (2014), "Job referral networks and the determination of earnings in local labor markets," *Journal of Labor Economics*, forthcoming.
- [194] Snijders, T. (2001), "The statistical evaluation of social network dynamics," Sociological Methodology 31, 361-395.
- [195] Topa, G. (2001), "Social interactions, local spillovers and unemployment," Review of Economic Studies 68, 261-295.
- [196] Vega-Redondo, F. (2007), Complex Social Networks, Cambridge University Press: Cambridge.
- [197] Verdier, T. and Y. Zenou (2004), "Racial beliefs, location and the causes of crime," International Economic Review 45, 727-756.
- [198] Wahba, J. and Y. Zenou (2005), "Density, social networks and job search methods: Theory and applications to Egypt," *Journal of Development Economics* 78, 443-473.
- [199] Wasserman, S. and K. Faust (1994), Social Network Analysis. Methods and Applications, Cambridge: Cambridge University Press.
- [200] Wellman, B. (1996), "Are personal communities local? A dumptarian reconsideration," Social Networks 18, 347-354.
- [201] Wial, H. (1991), "Getting a good job: Mobility in a segmented labor market," Industrial Relations 30, 396-416.
- [202] Wilson, W.J. (1987), The Truly Disadvantaged: The Inner City, the Underclass, and Public Policy, Chicago: University of Chicago Press.
- [203] Wilson, W.J. (1996), When Work Disappears: The World of the New Urban Poor, New York: Knopf.
- [204] Yinger, J. (1986), "Measuring racial discrimination with fair housing audits," American Economic Review 76, 881-93.
- [205] Yinger, J. (1997), "Cash in your face: The cost of racial and ethnic discrimination in housing," *Journal of Urban Economics* 42, 339-65.

- [206] Zenou, Y. (2009), Urban Labor Economics, Cambridge: Cambridge University Press.
- [207] Zenou, Y. (2013), "Spatial versus social mismatch," Journal of Urban Economics 74, 113-132.
- [208] Zenou, Y. (2014), "Networks in Economics," In: J.D. Wright (Ed.), International Encyclopedia of Social and Behavioral Sciences, 2nd Edition, Amsterdam: Elsevier Publisher.
- [209] Zenou, Y. (2015a), "A dynamic model of weak and strong ties in the labor market," Journal of Labor Economics, forthcoming.
- [210] Zenou, Y. (2015b), "Key players," In: Y. Bramoullé, B.W. Rogers and A. Galeotti (Eds.), Oxford Handbook on the Economics of Networks, Oxford: Oxford University Press, forthcoming.