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This paper develops a framework for estimating household prefer-
ences for school and neighborhood attributes in the presence of sort-
ing. It embeds a boundary discontinuity design in a heterogeneous
residential choice model, addressing the endogeneity of school and
neighborhood characteristics. The model is estimated using restricted-
access Census data from a large metropolitan area, yielding a number
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of new results. First, households are willing to pay less than 1 percent
more in house prices—substantially lower than previous estimates—
when the average performance of the local school increases by 5
percent. Second, much of the apparent willingness to pay for more
educated and wealthier neighbors is explained by the correlation of
these sociodemographic measures with unobserved neighborhood
quality. Third, neighborhood race is not capitalized directly into hous-
ing prices; instead, the negative correlation of neighborhood percent
black and housing prices is due entirely to the fact that blacks live in
unobservably lower-quality neighborhoods. Finally, there is consider-
able heterogeneity in preferences for schools and neighbors, with
households preferring to selfsegregate on the basis of both race and
education.

I. Introduction

Economists have long been interested in estimating household pref-
erences for school and neighborhood attributes, given their relevance
to many central issues in applied economics. Most fundamentally, pref-
erences for schools and neighbors shape the way that households sort
in the housing market,' influencing the level of residential segregation
and the matching of households to schools. As such, reliable estimates
of household preferences for schools and neighbors are essential in
order to understand how schools, neighborhoods, and houses are al-
located in practice.

This paper develops a framework for recovering household prefer-
ences for a broad set of school and neighborhood attributes in the
presence of sorting. At its heart is a discrete-choice model of the house-
hold residential location decision that allows household tastes to vary
flexibly over housing and neighborhood characteristics. The model per-
mits household choices to be influenced by unobservable choice attri-
butes, and it nests two prominent frameworks for measuring household
valuations for house and neighborhood characteristics—hedonic price
regressions and traditional discrete-choice models*—as special cases.

The paper’s first contribution is to provide a strategy for addressing
the endogeneity of school and neighborhood attributes in the context
of this heterogeneous sorting model. Of necessity, sorting correlates
household and neighborhood attributes and, in the process, induces

" Intuition for the way sorting affects the housing market equilibrium derives from a
long line of theoretical work in local public finance, following from Tiebout’s seminal
1956 paper. Important contributions include research by Epple and Zelenitz (1981), Epple,
Filimon, and Romer (1984, 1993), Benabou (1993, 1996), Fernandez and Rogerson
(1996), and Nechyba (1997).

? Following Berry, Levinsohn, and Pakes (1995), we add a term that captures the un-
observed quality of each residential choice, extending the traditional discrete-choice model
introduced by McFadden (1978).
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correlations among a host of neighborhood attributes, including those
that are unobserved. To account for the resulting significant endo-
geneity problems, we embed the boundary discontinuity design (BDD)
developed by Black (1999) in our sorting model. Black’s original ap-
plication included school attendance zone boundary fixed effects in
hedonic price regressions to control for the correlation of school qual-
ity and unobserved neighborhood quality.” In this paper, we show how
the BDD can be extended in two dimensions: first, to deal with the
systematic correlation of neighborhood sociodemographic character-
istics and unobserved neighborhood quality* and, second, to help iden-
tify the full distribution of household preferences for schools and
neighbors.

On the basis of our sorting model and extended boundary identifi-
cation approach, the paper’s second main contribution is to provide
new estimates of household preferences for schools and neighbors. To
that end, we make use of a unique data set, built on a restricted-access
version of the U.S. Census, that links detailed characteristics for nearly
a quarter of a million households and their houses in the San Francisco
Bay Area with their precise residential location (down to the census
block). This precise matching of households to their houses and neigh-
borhoods allows us not only to estimate the heterogeneous sorting
model but also to characterize detailed variation in sociodemographic
characteristics on a block-by-block basis.

To motivate our general framework, we begin with a descriptive anal-
ysis of sorting at school attendance zone boundaries using these rich
census data. Given a discontinuity in local school quality at a school
boundary, one might expect that residential sorting would lead to dis-
continuities in the characteristics of households residing on opposite
sides of the same boundary; even if a school boundary was initially drawn
such that the houses immediately on either side were identical, house-
holds with higher incomes and education levels might be expected to
sort onto the side with the better school. This consequence of sorting
is clearly apparent in our empirical analysis: nonparametric plots in the
region of school attendance zone boundaries show sharp changes in

* Intuitively, differences in house prices on opposite sides of school attendance zone
boundaries reflect the discontinuity in the right to attend a given school and therefore
provide an estimate of the value that households place on the difference in school quality
across the boundary.

*Because of the inherent difficulty of isolating variation in neighborhood sociodemo-
graphics uncorrelated with unobserved aspects of neighborhood and housing quality, many
researchers (see, e.g., Cutler, Glaeser, and Vigdor 1999; Bajari and Kahn 2005) have elected
to recognize the endogeneity of neighborhood sociodemographics as a limitation of their
analysis. In other cases, researchers have isolated variation in neighborhood sociodemo-
graphics within census tracts or other broader regions, though the underlying factors
causing variation in sociodemographics are unobserved, and thus the fundamental en-
dogeneity problem described here remains.
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household income, education, and race, with higherincome, better-
educated households sorting onto the side of the boundary with higher
school quality. At the same time, housing characteristics are more or
less continuous.

In an idealized setting—one in which researchers were able to com-
pare a vast number of houses facing each other directly but on opposite
sides of the same boundary—these differences in sociodemographics
would be of little import: the neighborhoods experienced by households
on each side of the boundary would, to all intents and purposes, be the
same.’ In practice, researchers are forced to compare houses in bands—
often over 0.3 mile wide—on either side of school boundaries in order
to have sufficient sample sizes for inference.® Given the clear differences
in sociodemographics that arise through sorting, it then becomes po-
tentially important to control for differences in neighbor characteristics,
since the house price differences found in the recent boundary fixed
effects literature may reflect not only the discontinuity in school quality
but also the value that households place on the corresponding differ-
ences in the characteristics of their immediate neighbors.” As in Black
(1999), our results indicate that the inclusion of boundary fixed effects
substantially reduces the coefficient on school quality in hedonic price
regressions. But the subsequent inclusion of precise neighborhood so-
ciodemographic controls reduces this estimate further, by approximately
50 percent, even when constraining the sample to narrower bands of
0.10 mile.

Next, we show that the boundary approach can be extended to learn
about household valuations of neighborhood sociodemographics. Our
key insight is that household sorting across boundaries generates vari-
ation in neighborhood sociodemographics that is primarily related to
an observable aspect of neighborhood quality—in this case, schools. Thus,
to the extent that one can control for differences in school quality on
opposite sides of the boundary, a boundary discontinuity design provides
a plausible way to estimate the value that households place on the char-

®> We note, however, that school peers would differ discontinuously right at the boundary.
In the analysis below, we are able to account for such differences in school peers, with
little effect on our main findings.

® Black (1999) compares results from three subsamples: 0.35 mile, 0.2 mile, and 0.15 mile
to the nearest boundary, whereas Kane, Staiger, and Samms (2003) focus on houses within
2,000 feet, 1,000 feet, and 500 feet of the closest boundary, corresponding to 0.4-, 0.2-, and
0.1-mile bands, respectively.

" The regression discontinuity design (RDD) literature notes identification problems
arising from sorting, since the quasi-random assignment of treatment and control groups
in an RDD becomes invalid once individuals self-select into the treatment. For a recent
exposition of this problem, see Lee (2007), although the older RDD literature also makes
this point clear (see, e.g., Cook and Campbell 1979).
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acteristics of their immediate neighbors.® In a hedonic price regression
setting, we show that the inclusion of boundary fixed effects reduces
the magnitudes of the coefficients on the income and education of
one’s neighbors by 25 and 60 percent, respectively. This is consistent
with the intuitive notion that higher-income and better-educated house-
holds select into neighborhoods with better amenities. Even more strik-
ingly, the estimated coefficient on the fraction of black neighbors de-
clines from —$100 in rent per month to zero when boundary fixed
effects are included in the hedonic regression. This implies that the
initial negative correlation of housing prices and fraction of black neigh-
bors observed in our data set is driven by the correlation of race and
unobserved neighborhood quality captured by the boundary fixed
effect.

In the second half of the paper, we show how the boundary discon-
tinuity design can be incorporated in the estimation of a model of
residential sorting. This analysis not only returns estimates of the full
distribution of household preferences for housing and neighborhood
attributes, but also serves to illuminate when the coefficients in a he-
donic price regression provide a close approximation to mean prefer-
ences. Using our sorting model, we first show that if households are
homogeneous, estimation reduces to a hedonic price regression, con-
sistent with the notion that market prices must reflect mean preferences
when all households are identical. When households are heterogeneous,
estimates of a hedonic price regression will generally approximate mean
preferences when housing and neighborhood attributes vary more or
less continuously throughout the metropolitan area. For attributes in
limited supply, however, the market price is generally driven by the
preferences of households on the margin between purchasing a house
with or without the attribute. In this case, our sorting model provides
an intuitive adjustment to the hedonic price regression that accounts
for differences in valuation between the mean and marginal households.

The estimated parameters of the general sorting model indicate that
the hedonic price regression coefficients are indeed very close to mean
preferences for housing and neighborhood attributes that vary more or
less continuously throughout the metropolitan area, including school
quality and neighborhood income and education. In contrast, the es-
timated mean preference for black neighbors is significantly negative

* Our identifying assumption is that the included controls for neighborhood sociode-
mographics—percent highly educated; average income; percent black, Hispanic, and
Asian, respectively—capture everything relevant about the characteristics of one’s neigh-
bors. This assumption would be necessary in any circumstance in which one wanted to
estimate the value of neighborhood amenities. Unlike controlling for fixed effects at a
broader geographic level, where the variation in neighborhood sociodemographics is still
systematically related to unobserved aspects of housing and neighborhood quality, our
approach gives us a handle on the fundamental source of sorting at these boundaries.
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(—$105 in rent per month) even after we control for boundary fixed
effects; this estimate is markedly different from the estimated coefficient
of zero in the hedonic price regression. In this case, the hedonic price
of neighborhood race is driven by those households on the margin of
selecting neighborhoods with varying racial compositions, whereas the
estimated mean preference accounts for the fact that the majority of
the households that are inframarginal are whites who live in segregated
neighborhoods with few (if any) black households. Finally, the estimates
of our sorting model also indicate that there is considerable hetero-
geneity in preferences for schools and neighbors. Our analysis implies
that, conditional on neighborhood income, households prefer to self-
segregate on the basis of both race and education.

It is important to underscore some limitations of our approach. First,
the sorting model deals only with preference heterogeneity that varies
with observable household characteristics. Although our Census data
set allows the inclusion of a large number of observable features of each
household and housing unit, future research could potentially adopt
a random coefficients specification.” Second, the empirical strategy
adopted in this paper takes into account a number of important en-
dogeneity concerns, but it does not address the possibility that the
higher-income households on the higher test score side of a school
boundary might be more likely to make home improvements (install
granite countertops, e.g.) unobserved by the researcher, in turn con-
tributing to the higher average house prices on that side of the bound-
ary. That said, we are unaware of any paper in the literature that has
been able to deal with this issue.

The rest of the paper is organized as follows: In Section II, we describe
the data used in the analysis. Descriptive evidence on sorting at school
attendance zone boundaries is presented in Section III, and hedonic
estimates in Section IV. The sorting model is set out in Section V, our
estimates of the model are discussed in Section VI, and Section VII
presents conclusions.

II. Data
A.  Census Data Set

The primary data set used in our analysis is drawn from the restricted-
access version of the 1990 (decennial) Census. This data set provides
information for the full sample of households that filled out the long-
form questionnaire—approximately 15 percent of the population. For
each household, these data provide a wide range of economic and de-

9 This would come at a cost, though, since additional structure is needed to estimate
unobserved heterogeneity.
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mographic variables, including the race/ethnicity, age, educational at-
tainment, and income of each household member. In addition, the data
also characterize each household’s residence: whether the unit is owned
or rented, the corresponding rent or owner-reported value, property
tax payment, number of rooms, number of bedrooms, type of structure,
and the age of the building.

For our purposes, the most important feature of this restricted-access
Census data set is that it characterizes the location of each individual’s
residence and workplace very precisely; these locations are specified at
the level of the census block (a region with approximately 100 individ-
uals) rather than the publicly available census Public Use Microdata
Area (PUMA: a region with an average of 100,000 individuals). This
precise geographic information allows us to examine the way that house-
holds and houses vary from block to block anywhere within our study
area.

The study area for our analysis consists of six contiguous counties in
the San Francisco Bay Area: Alameda, Contra Costa, Marin, San Mateo,
San Francisco, and Santa Clara. We focus on this area for two main
reasons. First, it is reasonably self-contained: a very small proportion of
commutes originating within these six counties in 1990 ended up at
work locations outside the area, and vice versa. Second, the area is sizable
along a number of dimensions: it includes over 1,100 census tracts, 4,000
census block groups, and almost 39,500 census blocks, the smallest unit
of aggregation in the data. Our full sample consists of around 650,000
people in 242,100 households.

For this sample, we construct a variety of housing and neighborhood
variables based on the restricted-access Census data. We use information
provided by the head of the household to construct a predicted house
price measure. Renters simply report a measure of the current monthly
rent, whereas owners report an estimate of the current market value of
the house,' and we place house values and rents on the same monthly
basis to obtain a single house price variable.

We also construct a set of detailed neighborhood-level variables char-
acterizing the racial, education, and income composition of each census
block and census block group. We merge additional local data with each
house record, relating to crime rates, land use, topography, urban den-
sity, and local schools."" As our primary measure of school quality, we

'“We refine the self-reported house value variable so as to reduce some of the mea-
surement error in it. In particular, the house value variable recorded in the census is a
categorical variable, falling into one of 26 bins, including a bin for top-coded values
($500,000 or more in 1990). Using additional information on a continuous measure of
property taxes and a rich set of house and neighborhood controls, along with the rules
implicit in Proposition 13, we convert this categorical variable into a point estimate for
each housing unit. (See the Data Appendix for a fuller discussion.)

! See the Data Appendix for more details.
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use the average fourth-grade mathematics and reading test score for
each school, averaged over two years; this averaging helps to reduce any
year-to-year noise in the school quality variable. While the average test
score is an imperfect quality measure, it has the advantage of being
easily observed by both parents and researchers; as a result, it has been
used in most analyses that attempt to measure the demand for school
quality."

Summary statistics for the primary housing and neighborhood vari-
ables in our full sample are given in columns 1 and 2 of table 1 (and
repeated in table 2)." In the 1990 Census, average house values in this
sample are around $300,000 and rents approximately $750 per month.
The average test score, our measure of school quality, has a mean of
527 and a standard deviation of 74. Around 60 percent of homes are
owned, and the average number of rooms per housing unit is just over
five. In terms of neighborhood sociodemographics, census block groups
in our full sample are on average 68 percent white and 8 percent black;
44 percent of the heads of household in each census block group have
a college degree or more, and average block group income is just under
$55,000 per year.

B.  Transactions Data Set

As a complement to the restricted-access Census data, we have also
assembled a data set that characterizes the complete set of housing
transactions in the San Francisco Bay Area between 1992 and 1996.
These data are based on county public records and contain detailed
information about every housing unit sold during that period, including
the exact transaction price and the exact street address."* We use the
transactions data to investigate the robustness of our findings, given that
census housing prices are self-reported, though we note that this data
set is not representative of the full sample of households—the stock of
homeowners and renters—living in a neighborhood, instead capturing
the flow of new homeowners into a neighborhood.

While our transactions data set does not directly include demographic
information on home buyers, we were able to add some buyer char-
acteristics by drawing on data collected in accordance with the Home
Mortgage Disclosure Act (HMDA). Enacted by Congress in 1975 and

" In specifications designed to study the robustness of our baseline results, we also
include other schooling measures that characterize a school’s teachers and peers.

" The full sample of 242,100 households is used in the first step of the estimation of
the logit model, described in Sec. V. Our boundary subsamples, summarized in cols. 3—7
of tables 1 and 2, are used to study sorting at school attendance zone boundaries (see
Secs. III and IV) and in the second step of the estimation procedure.

" Black (1999) used a similar housing transactions data set from the Boston area.
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implemented by the Federal Reserve Board’s Regulation C, the HMDA
data provide some information about the buyer/applicant (including
household income), as well as the mortgage loan amount, the mortgage
lender’s name, year of the transaction, and the census tract in which
the property is located.'”” We were able to merge the HMDA data with
our housing transactions on the basis of census tract, loan amount, date,
and lender name. This procedure resulted in unique matches for ap-
proximately 60 percent of all home sales and allowed us to generate
neighborhood variables for 85 percent of the sample. Column 1 of
Appendix table Cl presents a description of this sample.

C.  School Attendance Zone Boundaries

In order to implement the boundary approach, we gathered school
attendance zone maps for as many elementary schools as possible in
the Bay Area, for the period around the 1990 Census.'® Our final at-
tendance zone sample consists of 195 elementary schools—just under
a third of the total number in the Bay Area. From this sample, we
excluded portions of boundaries coinciding with school district bound-
aries, city boundaries, or large roads, since they could potentially con-
found our identification strategy.

For census blocks falling within these attendance zones, we followed
a simple procedure to assign each block to a boundary. For each block,
we calculated the perpendicular distance from the block centroid to
the nearest school attendance zone boundary. We then located the clos-
est “twin” census block on the other side of that boundary. If a given
block had a lower score than its twin, it was designated as being on the
“low” side of the boundary; otherwise it was designated as being on the
“high” side of the boundary. We restrict attention to boundaries for
which we have census data on both high and low sides.

For our main boundary analysis, we focus on houses in all census
blocks that are within 0.20 mile of the closest school attendance zone
boundary. The average distance to the boundary for this subsample is
thus quite a lot smaller than 0.20 mile. For comparison, we also analyze
a further subsample, consisting of houses assigned to census blocks

"> The act requires lending institutions to report public loan data. Its purpose is to
provide data that can be used to determine whether financial institutions are serving the
housing needs of their communities and whether public officials are distributing public-
sector investments so as to attract private investment to areas in which it is needed. The
data are also intended to help identify any possible discriminatory lending patterns (see
http://www.ffiec.gov/hmda for more details).

'% School attendance zone maps are not provided or catalogued by the State of California.
Therefore, we contacted all local school districts and schools individually and requested
detailed maps for each school attendance zone within a district around the period of our
analysis. Subsequently, these maps were digitized in order to be used in this research.



PREFERENCES FOR SCHOOLS AND NEIGHBORHOODS 599

within 0.10 mile of the closest attendance zone boundary. Although the
0.10-mile subsample includes approximately half the number of obser-
vations, it provides a closer approximation to the ideal comparison of
houses on the opposite sides of the same street, though in separate
attendance zones.

Column 3 of table 1 shows averages for the 0.20-mile subsample, and
column 3 of table 2 presents analogous numbers for the 0.10-mile sub-
sample. When these are compared to the full Bay Area sample (col. 1),
itis clear that prices, test scores, ownership, house size, average income,
and percentage white are slightly lower in the boundary subsamples.
This is due in part to the absence of San Francisco from our boundary
samples, given that it does not have well-defined attendance zones.

III. Discontinuities at Attendance Zone Boundaries

In this section, we present descriptive evidence that sheds light on house-
hold sorting in the region of school attendance zone boundaries. We
take advantage of the block-level information provided in the restricted
version of the census to measure the characteristics of housing units
and households in a precise way on each side of a given boundary.
Throughout this section, we focus on boundaries for which the test
score gap comparing low and high sides is in excess of the median gap
(38.4 points); if schools were identical on either side, there would be
little reason to expect to see sorting.

We begin with a series of figures that summarize the movement of
variables in the boundary region. The figures are constructed by first
regressing the variable in question on boundary fixed effects and on
distance to the boundary dummy variables and then plotting the co-
efficients on these distance dummies. Thus a given point in each figure
represents the conditional average (in 0.02-mile bands) of the variable
in question at a given distance to the boundary, where negative distances
indicate the low test score side; all averages are normalized to zero at
the closest point on the low side of the boundary.

By construction, and as shown in the top-left panel of figure 1, there
is a clear discontinuity in average test score at the boundary. For the
census sample considered, the magnitude of the discontinuity is around
75 points (which is approximately a standard deviation). The top-right
panel of figure 1 shows a similar pattern for the test scores assigned to
the housing transactions data. The bottom-left panel of figure 1 shows
the difference in house prices on low versus high sides using the Census
data, which corresponds to approximately $18,000 at the threshold. The
more precise transaction price data in the bottom-right panel show a
similar seam: a $20,000 difference right at the boundary.

As Black (1999) pointed out, if all housing and neighborhood amen-
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F1G6. 1.—Test scores and house prices around the boundary. Each panel is constructed
using the following procedure: (i) regress the variable in question on boundary fixed
effects and on 0.02-mile band distance to the boundary dummy variables; (ii) plot the
coefficients on these distance dummies. Thus a given point in each panel represents this
conditional average at a given distance to the boundary, where negative distances indicate
the low test score side.

ities were continuous at the boundary, then these differences in price
would correspond to the observed gap in school quality. Given the prox-
imity of houses across the boundary, it is probably reasonable to expect
a somewhat similar housing stock at the threshold."” We test this as-
sumption by comparing housing characteristics across the boundary.
The panels of figure 2 show that the housing variables drawn from the
census—average number of rooms, ownership, and year built—are con-
tinuous through the boundary. Similarly, figure 3 shows that the housing
variables in our transactions data set are also reasonably continuous
through the boundary, perhaps with the exception of square footage,
though we note that transactions data are less representative, consisting
of a sample of recently moved-in homeowners.

In contrast, figure 4 presents a different picture with respect to the
people inhabiting those houses. On average, the households on the
high test score side of the boundary have more income and education

"It is important to keep in mind that these school attendance zone boundaries do not
coincide with school district boundaries or city boundaries and are not aligned with major
roads.
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F1G6. 2.—Census housing characteristics around the boundary. Each panel is constructed
using the following procedure: (i) regress the variable in question on boundary fixed
effects and on 0.02-mile band distance to the boundary dummy variables; (ii) plot the
coefficients on these distance dummies. Thus a given point in each panel represents this
conditional average at a given distance to the boundary, where negative distances indicate
the low test score side.

and are less likely to be black. This observed sorting at attendance zone
boundaries provides initial evidence suggesting that household pref-
erences for schools are heterogeneous.

The corresponding statistical tests for the presence of discontinuities
at the boundaries are reported in column 7 of tables 1 and 2 for the
0.20- and 0.10-mile subsamples, respectively, using the same subsamples
as the figures. For each subsample, the tests are based on regressions
of the running variable on boundary fixed effects and a dummy that
designates the high side of the boundary, clustering at the school at-
tendance zone level. These tests underscore the main findings from the
figures: that test scores and house prices are discontinuous at the bound-
ary, that housing attributes are reasonably continuous in this sample,
and that neighborhood sociodemographics present a significant seam
at the attendance zone boundaries. Interestingly, we also find minimal
evidence of a discontinuity in monthly rents, which suggests that average
test scores and neighborhood characteristics are capitalized more fully
into property values than rents. Appendix table CI reports similar tests
using the housing transactions data. The results for this more select
sample broadly corroborate the census findings.
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F16. 3.—Transactions data housing characteristics around the boundary. Each panel is
constructed using the following procedure: (i) regress the variable in question on boundary
fixed effects and on 0.02-mile band distance to the boundary dummy variables; (ii) plot
the coefficients on these distance dummies. Thus a given point in each panel represents
this conditional average at a given distance to the boundary, where negative distances
indicate the low test score side.

Collectively, the results presented in this section indicate that house
prices respond positively to the variation in test scores across the bound-
aries. Moreover, the results also clearly indicate that households sort
with respect to school attendance zone boundaries. These descriptive
results have two immediate consequences for hedonic analyses. First,
because sorting with respect to boundaries is pronounced, ignoring it
is likely to lead to an overstatement of the demand for schools versus
the characteristics of immediate neighbors. This issue is likely to be
especially relevant for analyses that include houses not in the immediate
vicinity of a boundary. Second, the significant variation in neighborhood
as well as school sociodemographic characteristics in the boundary re-
gion suggests that a boundary discontinuity design may prove useful in
learning about willingness to pay for neighborhood sociodemographic
characteristics. We now explore these consequences further.

IV. Hedonic Price Regressions

In this section, we use a regression framework to investigate relationships
among key variables in the region of school attendance zone boundaries.
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F16. 4—Neighborhood sociodemographics around the boundary. Each panel is con-
structed using the following procedure: (i) regress the variable in question on boundary
fixed effects and on 0.02-mile band distance to the boundary dummy variables; (ii) plot
the coefficients on these distance dummies. Thus a given point in each panel represents
this conditional average at a given distance to the boundary, where negative distances
indicate the low test score side.

Doing so brings to light consequences for the boundary identification
approach that have not been addressed in prior research. In particular,
we show that controlling for neighborhood sociodemographics has a
quantitatively significant effect on the school quality coefficient in he-
donic price regressions, even when accounting for neighborhood unob-
servables. We also show that the negative correlation between house
prices and neighborhood race widely reported in the literature is fully
explained by the correlation between neighborhood race and unob-
served neighborhood quality.

Our main estimating equation relates the price of house /4 to a vector
of housing and neighborhood characteristics X, and a set of boundary
fixed eftects, 0,,, which equal one if house % is within a specified distance
of boundary b and zero otherwise:

pn = BX/, + 01,1,, + Eh‘ (1)

To maximize the sample size in our baseline analysis, we include both
owner- and renter-occupied units in the same sample. To put these units
on a comparable basis, we convert house values to a measure of monthly
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user costs using a hedonic regression that returns the average ratio of
house values to rents for housing units with comparable observable
characteristics; we do so for each of 45 subregions of the Bay Area."

A comparison between hedonic regressions for the full sample versus
the houses in the boundary subsamples (within 0.20 and 0.10 mile re-
spectively) is shown in Appendix table C2. All estimated coefficients for
test scores and neighborhood sociodemographics indicate that hedonic
results without the inclusion of boundary fixed effects hardly change
when constraining the sample to narrow bands around attendance zone
boundaries. From this point on, we restrict our attention to houses
located within 0.20 and 0.10 mile of a boundary line, since the boundary
fixed effects are defined only for houses located in those areas.

Table 3 reports estimates for the key parameters for a total of eight
specifications of this hedonic price regression, using the monthly user
cost of housing as the dependent variable. The reported specifications
differ along three dimensions: (i) whether neighborhood sociodemo-
graphics are included in the specification, (ii) whether boundary fixed
effects are included, and (iii) whether the sample consists of houses
within 0.20 mile versus 0.10 mile of a boundary. All the specifications
include a full set of controls for housing and neighborhood character-
istics, which are listed in the table notes.

A.  Baseline Results for Average Test Score

In discussing the results in table 3, we focus first on the specifications
reported in columns 1 and 2 of panel A. These use the sample of houses
within 0.20 mile of a school attendance zone boundary and exclude
neighborhood sociodemographic measures. When we compare the es-
timated coefficients on average test score in these specifications, the
results are qualitatively and quantitatively similar to those reported in
Black (1999). In particular, the estimated effect of a one-standard-
deviation increase in a school’s average test score on the cost of housing
declines by nearly 75 percent, from $124 to $33 per month, when bound-
ary fixed effects are included in the analysis. This suggests (as in Black’s
study) that the majority of the observed correlation between test scores

'¥ Separate estimation for each subregion (a census PUMA) allows the relationship
between house values and current rents to vary with local expectations about the growth
rate of future rents in the market. The average estimate of the ratio of house values to
rents is 264.1. See additional details in the Data Appendix. In subsequent analyses, we
report estimates of specifications of eq. (1) that limit the sample to only owner-occupied
units and use the original house value variable as the dependent variable.
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TABLE 3
Key COEFFICIENTS FROM BASELINE HEDONIC PRICE REGRESSIONS
SAMPLE
Within 0.20 Mile Within 0.10 Mile
of Boundary of Boundary
(N = 27,548) (N = 15,122)
Boundary fixed effects
included No Yes No Yes
A. Excluding Neighborhood Sociodemographic
Characteristics
(1 B) ) (6)
Average test score (in 123.7 33.1 126.5 26.1
standard deviations) (13.2) (7.6) (12.4) (6.6)
R .54 .62 .54 .62
B. Including Neighborhood Sociodemographic
Characteristics
(3) (4) (7) (8)
Average test score (in 34.8 17.3 44.1 14.6
standard deviations) (8.1) (5.9) (8.5) (6.3)
% census block group —99.8 1.5 —123.1 4.3
black (33.4) (38.9) (32.5) (39.1)
% block group with 220.1 89.9 204.4 80.8
college degree or (39.9) (32.3) (40.8) (39.7)
more
Average block group 60.0 45.0 55.6 42.9
income (/10,000) (4.0) (4.6) (4.3) (6.1)
R .59 .64 .59 .63

NoTe.—All regressions shown in the table also include controls for whether the house is owner-occupied, the number
of rooms, year built (1980s, 1960-79, pre-1960), elevation, population density, crime, and land use (% industrial, %
residential, % commercial, % open space, % other) in 1-, 2-, and 3-mile rings around each location. The dependent
variable is the monthly user cost of housing, which equals monthly rent for renter-occupied units and a monthly user
cost for owner-occupied housing, calculated as described in the text. Standard errors corrected for clustering at the
school level are reported in parentheses.

and housing prices is driven by the correlation of school quality with
other aspects of housing or neighborhood quality."

Continuing to focus on columns 1 and 2 of table 3, we next compare
the estimated coefficients on average test score in panel A versus panel
B. This comparison highlights the additional impact of controlling for
neighborhood sociodemographic characteristics, over and above the
inclusion of boundary fixed effects. Estimates from column 4 show that
the addition of detailed sociodemographic measures reduces the co-
efficient on average test score to $17 per month.* This reduction is due

" Black (1999) finds that a 5 percent increase in test scores changes house prices by
4.9 percent for the full sample and by only 2.1 percent when controlling for boundary
fixed effects.

* The low estimated value may partly reflect the informational problem households
face in attempting to distinguish the quality of a school.
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entirely to the sorting of households across school attendance zone
boundaries already shown in the descriptive tables and figures above.
The magnitude of this reduction—50 percent—highlights the fact that
the inclusion of boundary fixed effects in a hedonic price regression is
not fully effective in controlling for all aspects of neighborhood quality.*'

Our preferred estimate of $17 per month for a one-standard-deviation
increase in the average test score is roughly 1.8 percent of the average
monthly user cost of housing and corresponds to approximately $4,500
in house value in 1990. The key assumptions underlying the interpre-
tation of this estimate as the market value of school quality are (i) that
unobserved housing characteristics do not vary across the boundary and
(ii) that the measures for neighborhood race/ethnicity, education, and
income included in the regression control fully for sorting across bound-
aries. There is also a possibility that the average test score captures
something else about the school (e.g., peers or teachers) that house-
holds actually value. We explore this issue further in the robustness
section (subsection C) below.

B.  Baseline Results for Neighborhood Sociodemographic Characteristics

Comparing the coefficients on neighborhood sociodemographic char-
acteristics in the specifications shown in columns 3 and 4 of table 3
provides estimates of the bias associated with the sorting of higher-
income and better-educated households into neighborhoods with dif-
ferent levels of unobserved neighborhood quality. In particular, the in-
clusion of boundary fixed effects leads to a 25 percent decline in the
coefficient on the average income of one’s neighbors, from $60 to $45
per month (for a $10,000 increase), and a 60 percent decline in the
coefficient on the fraction of neighbors that are college-educated, from
$220 to $90 per month. These results suggest that analyses that fail to
control for the correlation of neighborhood sociodemographics with
unobserved neighborhood quality are likely to significantly overstate the
extent to which neighborhood socioeconomic characteristics are capi-
talized into property values.

The effects for neighborhood race are perhaps even more interesting.
With the inclusion of boundary fixed effects, the coefficient on the
percentage of one’s neighbors who are black changes from —$100 to
$2. This implies that the racial composition of a neighborhood is not
capitalized directly into housing prices; instead, the large negative cor-
relation of housing prices and the fraction of black households in a

*' Tt is also worth noting that, for this sample, controlling carefully for neighborhood
sociodemographic characteristics has as largean impact on the coefficient on school quality
as the inclusion of boundary fixed effects, in both cases reducing the point estimate to
$33-$35 per month.
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neighborhood reflects in its entirety the correlation of unobserved as-
pects of neighborhood quality with neighborhood race in our data set.
While it is important to recognize that these specific point estimates
may not generalize to other cities, the negative correlation between the
fraction of blacks in a neighborhood and unobserved neighborhood
quality is likely to hold in most U.S. cities simply because black house-
holds are poorer and less educated than white households on average.
As a result, the extent to which race is capitalized into housing prices
is likely to be overstated in any analysis that does not isolate variation
in neighborhood race that is uncorrelated with unobserved neighbor-
hood quality.

The key advantage of using a boundary discontinuity design to esti-
mate the market value of neighborhood sociodemographics is that it
isolates variation in these characteristics that is primarily related to an
observable aspect of neighborhood quality. Thus, under the standard
assumptions of the BDD, as well as the assumption that the school
characteristics included in the regression—average test score and, in
additional specifications below, measures related to peers and teach-
ers—control fully for differences in school quality, the variation in neigh-
borhood sociodemographics at boundaries will be uncorrelated with the
unobservable. In contrast, a research design that isolates variation in
neighborhood composition across blocks or block groups within a
broader geographic level (e.g., through the inclusion of census tract
fixed effects) continues to rely on variation in neighborhood compo-
sition systematically related to any differences in the unobserved aspects
of housing and neighborhood quality across blocks or block groups.

As we discuss in greater detail in Section V below, the statistically and
economically insignificant coefficients on neighborhood race in speci-
fication 4 by no means imply that households do not have strong racial
preferences. On the contrary, the heterogeneous preferences we esti-
mate in the sorting model indicate that households have strong self-
segregating preferences. Rather, the fact that race is not capitalized into
housing values suggests that households are able to sort themselves
across neighborhoods on the basis of race without the need for price
differences to clear the market. We return to this issue once we have
reported estimates from the heterogeneous sorting model below.

C.  Robustness Checks

To examine the robustness of our main findings and also to help dis-
tinguish among alternative explanations for the patterns we have de-
scribed, we now consider how the results presented in columns 1-4 of
table 3 compare with analogous specifications.
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1. Distance to the Boundary

As described in Black (1999), the idealized use of a boundary discon-
tinuity design would compare the prices of houses on opposite sides of
a neighborhood street that served as a boundary between school atten-
dance zones. Such a comparison would hold everything about the neigh-
borhood as close to constant as possible, and any discontinuity in house
prices would be almost completely attributable to differences in the
valuation of the assigned schools. In reality, in order to generate large
enough samples, researchers employing a BDD have typically used a
sample of houses within a threshold distance of a boundary in the range
of 0.15-0.35 mile.

Owing to the size of our data set, we are able to consider a threshold
distance of 0.10 mile, rather than 0.20 mile, to the closest school atten-
dance zone boundary. These results are reported in columns 5-8 of
table 3. Comparing these coefficient estimates to those for the 0.20-mile
sample makes clear that the qualitative nature of the findings described
remains unchanged using the smaller sample. As this pattern holds more
broadly, we focus on results using the 0.20-mile sample in the remaining
tables both because they tend to be more precise and to avoid
redundancy.”

2. School Characteristics versus Immediate Neighbors

One explanation for our baseline results is that individuals have pref-
erences over their immediate neighbors (e.g., the individuals who reside
on just the same block instead of within a broader surrounding circle)
and that even at a threshold distance of 0.10 mile, these vary significantly
enough to matter. An alternative explanation is that households value
school sociodemographic characteristics over and above school quality
as reflected in the average test score. In this case, the neighborhood
sociodemographic measures included in our baseline specification
might proxy for school-level differences.

Specifications A—C in tables 4 and 5 are designed to examine the role
of these alternative explanations for our baseline results for average test
score and neighborhood sociodemographics respectively. Specification
A adds a series of controls that characterize the race, language ability,
and income of the children in the elementary school, as well as the
average education of the teachers.” As can be seen in the tables, the

# A full set of results for the 0.10-mile sample is available from the authors on request.

*In particular, controls are included for the fraction of Asian, black, and Hispanic
children in the elementary school; the fraction of students with limited English proficiency;
and the fraction receiving free lunch. An additional variable measures the fraction of
teachers whose educational attainment does not exceed a bachelor’s degree.
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TABLE 4
HEeDONIC PRICE REGRESSIONS: AVERAGE TEST SCORE, ALTERNATIVE SAMPLES
SampPLE: WITHIN 0.20 MILE OF BOUNDARY

NEIGHBORHOOD SOCIODEMOGRAPHICS

Excluded Included
1) (2) (3) (4)
Boundary fixed effects included No Yes No Yes
Baseline results (N = 27,548) 123.7 33.1 34.8 17.3
(13.2) (7.6) (8.1) (5.9)
Schools versus immediate neighbors:
A. Including school peer and 95.0 32.1 31.5 22.6
teacher measures (N = 27,548) (17.9) (10.4) (9.3) (8.5)
Alternative measures of neighbor-
hood characteristics:
B. Including block and block group 36.0 19.8
measures (N = 27,548) (7.8) (5.7)
C. Including block and alternative 33.7 23.8
block group measures (N = (7.3) (5.6)
27,548)
Other robustness checks:
D. Dropping top-coded houses (N = 86.6 29.5 20.3 16.1
26,579) (9.9) (6.6) (7.7) (5.7)
Only owner-occupied housing units:
E. Using census-reported house 64,891 14,874 27,883 9,376
value (N = 15,139) (7,474) (3,197) (5,047) (2,460)
F. Using prices from transactions 34,262 12,210 14,208 9,176
sample (N = 10,171) (4,958) (3,108) (2,886) (2,738)

NoTe.—The dependent variable in specifications A-D is the monthly user cost of housing, which equals monthly
rent for renter-occupied units and a monthly user cost for owner-occupied housing, calculated as described in the text;
the dependent variable in specification E is the market value of the house self-reported in the census; the dependent
variable in specification F is the transaction price reported in our transactions data set. Specifications A-E are based
on our census sample and include controls for whether the house is owner-occupied, the number of rooms, year built
(1980s, 1960-79, pre-1960), elevation, population density, crime, and land use (% industrial, % residential, % com-
mercial, % open space, % other) in 1-, 2-, and 3-mile rings around each location. Specification F is based on our
transactions data set and includes the same controls as in the other specifications along with additional controls for
square footage and lot size. Standard errors corrected for clustering at the school level are reported in parentheses.

inclusion of these well-measured school controls does little to change
the pattern of results for either the coefficient on average test score
(table 4) or the set of coefficients on the included neighborhood so-
ciodemographic measures (table 5). Thus households do not seem to
place significant value on the variation in school sociodemographics
that is not explicitly correlated with either the average test score or local
neighborhood sociodemographics.”

* One explanation for this result is that households may sort on the basis of published
test scores and neighborhood sociodemographics. This would be natural if households
found it difficult to separate out the portion of the test score attributable to school
sociodemographic composition from the underlying effectiveness of the school. Rothstein
(2006) addresses this issue. Instead of modeling residential location and schooling deci-
sions, he uses variation across school districts applied to a set of 1994 Scholastic Aptitude
Test takers in a bid to disentangle parental choice based on school effectiveness and peer
groups respectively. His findings suggest that parents have difficulty distinguishing these
components.
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That the inclusion of school sociodemographic measures does little to
affect the analysis suggests that the valuation of one’s immediate neigh-
bors may be an important factor explaining the significant impact of
controlling for neighborhood sociodemographics. To explore this pos-
sibility more fully, specification B reports results for a regression that
includes controls for neighborhood sociodemographics measured at the
census block level, along with our baseline neighborhood demographic
measures (measured at the block group level). The coefficients on av-
erage test score reported in table 4 change very little relative to our
baseline results with the inclusion of block-level controls. This suggests
that our baseline measure, which uses the average composition of the
portion of the block group on the same side of the boundary, does a
reasonably good job of capturing the variation in immediate neighbors
across boundaries.

The corresponding coefficients on both sets of sociodemographic
measures reported in table 5 imply that households do indeed place
significant value on the education and income levels of their immediate
neighbors—those on the same block.” In particular, the results reported
for specification B indicate that, conditional on block group composition, a
10 percent increase in the fraction of college-educated neighbors on
the same block raises house prices by an additional $6 per month, and
a $10,000 increase in the average income of households in the same
block raises house prices by an additional $25 per month. Neighborhood
race continues to have an insignificant effect on housing prices in these
hedonic price regressions.

Specification C addresses a further robustness issue related to the
construction of the block group neighborhood characteristics. In this
case, rather than limiting the measure to the portion of the block group
on the same side of the boundary, we include standard block group
averages that may span the boundary for block groups very close to it.
While the results are qualitatively similar to the pattern of results already
shown, the impact of controlling for neighborhood sociodemographics
on the average test score coefficient is dampened by a small amount.
This result is not entirely surprising given that this method of assigning
neighborhood sociodemographic characteristics systematically averages
the block group-level measures across boundaries.

* When one is reading these results, it is important to keep in mind that the coefficients
on the block-level measures capture the additional impact of variation at the block over
and above the contribution this variation makes to the block group-level measures.

* That a sizable portion of the effect of controlling for neighborhood sociodemographic
measures is attributable to the capitalization of the characteristics of immediate neighbors
into housing prices is also broadly consistent with the nonparametric plots of house values
and neighborhood sociodemographics in the region of school attendance zone boundaries
shown in figs. 1 and 4.
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3. Top-Coding of Census Prices

Specification D in tables 4 and 5 considers a sample in which top-coded
houses (those with values equal to or greater than $500,000 in 1990)
are dropped from the sample. While the magnitudes of the coefficients
on average test score are smaller when boundary fixed effects are not
included in the analysis, the results are nearly identical when fixed
effects are included.

4. Only Owner-Occupied Units

Specifications E-F in tables 4 and 5 restrict attention to owner-occupied
units based on samples drawn from the census and our transactions
data set, respectively. Specification E reports coefficients for a specifi-
cation in which the dependent variable is the house value reported
directly in the census rather than the monthly user cost of housing that
we use in our main analysis. While the qualitative pattern of results for
the owner-occupied units mirrors that of the full sample, the results for
average test scores are substantially greater in magnitude. With the in-
clusion of boundary fixed effects and neighborhood sociodemographic
characteristics, a one-standard-deviation increase in average test scores
is associated with a $9,400 increase in property values (the mean prop-
erty value in the 0.20-mile boundary sample is $250,000). This is equiv-
alent to approximately $35 in monthly user costs, which is roughly twice
the baseline estimate shown in the first row.”” The corresponding co-
efficients on the neighborhood sociodemographics reported in table 5
continue to suggest that neighborhood income is the characteristic most
directly capitalized into property values: the coefficients on both neigh-
borhood race and education are statistically insignificant when boundary
fixed effects are included in the analysis.

Specification F is based on actual transactions observed in our trans-
actions data set. This specification allows us to gauge the robustness of
our findings with respect to the self-reported house values in the census.
Before we discuss particular parameter estimates, it is worth reempha-
sizing a number of key differences between this sample and that based
on the restricted Census data. First, the housing prices are based on
actual transaction prices rather than self-reported values from census
respondents. Second, the sample not only includes owner-occupied
houses but also restricts attention to those who have had a recent trans-
action within a reasonably small window near the census year. Finally,
the only neighborhood sociodemographic measure included, average

*” Consistent with this conclusion, price regressions estimated on the sample of renters
reveal a slightly positive and insignificant coefficient on average test score when boundary
fixed effects are included in the analysis.
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income, is based on a sample of recent transactions and thus reflects
the characteristics of the flow of households currently moving into a
neighborhood rather than the stock of households already residing in
the area.

Despite these differences, the results reveal a pattern strikingly similar
to that of results reported in specification E. The coefficient on the
average test score declines by nearly 65 percent with the inclusion of
boundary fixed effects (from $34,000 to $12,000 in house value) and
then declines another 33 percent (to $9,000) with the inclusion of neigh-
borhood sociodemographics. The coefficient on average neighborhood
income, which proxies for all neighborhood sociodemographics in this
specification, declines more than 55 percent (or from $15,800 to $6,800
for a $10,000 increase in average income). Thus our baseline analysis
appears to be robust to the use of house values based on the self-reports
from the census.

D.  Summary

Overall, the qualitative pattern of results is remarkably robust across the
full set of specifications reported in tables 4 and 5. Three main con-
clusions emerge. First, sorting at school attendance zone boundaries is
an important phenomenon, already clear from the earlier graphical
analysis. Second, even when boundary fixed effects are included in the
analysis, failing to control for such sorting leads to a significant over-
statement of the capitalization of average test scores into house prices.
Third, controlling for differences in unobserved neighborhood quality
using a boundary discontinuity design leads to a substantial reduction
in the estimated effect of neighborhood socioeconomic and (especially)
racial characteristics on housing prices.

V.  Sorting Model

The clear evidence of sorting across school attendance zone boundaries
naturally suggests that households vary in their willingness to pay for at
least some features of schools and neighborhoods. This raises the ob-
vious issue of how the coefficients in the hedonic price regressions
reported in Section IV relate to underlying household preferences. In
this section, we develop a heterogeneous model of residential sorting,
using boundary fixed effects to help identify the entire distribution of
preferences for schools and neighborhoods. The model clarifies the
relationship between the distribution of preferences and the hedonic
price of school and neighborhood characteristics—in particular, when
the coefficients in a hedonic price regression are likely to provide a
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reasonable approximation to the mean marginal willingness to pay of
the population and when they are not.

A.  Model

We model the residential location decision of each household as a dis-
crete choice of a single residence.” The utility function specification is
based on the random utility model developed in McFadden (1973, 1978)
and the specification of Berry et al. (1995), which includes choice-
specific unobservable characteristics. Let X, represent the observable
characteristics of housing choice 7, including characteristics of the house
itself (e.g., size, age, and type), its tenure status (rented vs. owned), and
the characteristics of the surrounding neighborhood (e.g., school,
crime, population density, and topography). Let p, denote the price of
housing choice % and let dj denote the distance from residence % to
the primary work location of household i. Again, 0,, represents a set of
boundary fixed effects, equaling one if house & is within a specified
distance of boundary b and zero otherwise. Each household chooses its

residence % to maximize its indirect utility function V;:*

max V, = aiX, — 01};19/; —oyd, + 0, + &, + ¢, (2)
()

The error structure of the indirect utility is divided into a correlated
component associated with each housing choice, &, that is valued the
same by all households, and an individual-specific term, €. A useful
interpretation of £, is that it captures the unobserved quality of each
house, including any unobserved quality associated with its neighbor-
hood.

Each household’s valuation of choice characteristics is allowed to vary
with its own characteristics, z’, including education, income, race, em-
ployment status, and household composition. Specifically, each param-
eter associated with housing and neighborhood characteristics and

* Following McFadden (1978), a long line of papers use discrete-choice models to
estimate residential choice. Many of these papers, including Quigley (1985), Nechyba and
Strauss (1998), and Barrow (2002), focus specifically on estimating preferences for school
quality. A related line of research using hedonic demand models, including Rosen (1974),
Epple (1987), Nesheim (2001), Heckman, Matzkin, and Nesheim (2003), Ekeland, Heck-
man, and Nesheim (2004), and Bajari and Benkhard (2005), provides an alternative
approach to estimating demand for nonmarketed goods and attributes. The fundamental
difference between hedonic demand and discrete-choice models is that the former assume
that households are able to select the level of consumption of each attribute to satisfy the
relevant first-order condition, whereas the latter explicitly account for the fact that house-
holds are constrained to choose among the finite set of choices in the data. An alternative
approach to estimating equilibrium models of sorting across jurisdictions is developed in
Epple and Sieg (1999).

* Alternative specifications of the indirect utility function that are nonlinear in housing
prices could certainly be estimated since the linear form is not essential to the model.
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price, o, for j € {X, Z, d, p}, varies with a household’s own characteristics
according to

K
o = gt D, o, (3)
k=1

with equation (3) describing household ¢% preference for choice char-
acteristic J.

Given the household’s problem described in equations (2) and (3),
household i chooses housing choice 7% if the utility that it receives from
this choice exceeds the utility that it receives from all other possible
choices. Therefore, the probability that a household chooses any par-
ticular house depends in general on the characteristics of the full set
of possible housing choices.

B.  Estimation

Estimation of the model follows a two-step procedure related to that in
Berry et al. (1995).% It is helpful to introduce some notation to simplify
the exposition. In particular, we rewrite the indirect utility function as

Vi=26,+N,+en (4)
where
0, = X, — oo, pnt 0y, + &, (5)

and

N, = (; akXch) X, — (/ZI Olkpzfc) b= (; alch;;) ;. (6)

In equation (5), 6, captures the portion of the utility provided by housing
choice A that is common to all households, and in (6), k indexes house-
hold characteristics. When the household characteristics included in
the model are constructed to have mean zero, 6, is the mean indirect
utility provided by housing choice h. The unobservable component of
0,, namely £,, captures the portion of unobserved preferences for hous-
ing choice A correlated across households; €] represents unobserved
preferences over and above this shared component.

The first step of the estimation procedure is a maximum likelihood
estimator, which returns estimates of the heterogeneous parameters in
A\ and mean indirect utilities, §,. The maximum likelihood estimator is
based on maximizing the probability that the model correctly matches

30 A fuller discussion of the model and estimation can be found in Bayer, McMillan,
and Rueben (2004).
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each household with its chosen housing choice. In particular, for any
combination of the heterogeneous parameters in A and mean indirect
utilities, ¢,, the model predicts the probability that each household i
chooses house h. We assume that €, is drawn from the extreme value
distribution, in which case this probability can be written as

;__exp (6, +N)

= — . 7
"7 Sexp (6, + M) 0

Maximizing the probability that each household makes its correct hous-
ing choice gives rise to the following log likelihood function:

I= 22 (B, 8)
where I is an indicator variable that equals one if household i chooses
housing choice % in the data and zero otherwise. The first step of the
estimation procedure then consists of searching over the parameters in
A\ and the vector of mean indirect utilities §, to maximize /.

Intuitively, it is easy to see how this first step of the estimation pro-
cedure ties down the heterogeneous parameters—those involving in-
teractions of household characteristics with housing and neighborhood
characteristics. In the data, if more educated households are more likely
to choose houses in neighborhoods with better schools, for instance, a
positive interaction of education and average test score will allow the
model to fit the data better than a negative interaction would. What is
less intuitive is how the vector of mean indirect utilities is determined.

To better understand the mechanics of the first step of the estimation
procedure, it is helpful to write the derivative of the log likelihood
function with respect to 4,

9 _ Ealn(m +231n(3i)

9, =05, S 95,
= > (1—-B)+>, (-B)
i=h i*+h
=1->,(B) =0. (9)

i

As this equation shows, the likelihood function is maximized at the
vector 6 that forces the sum of the probabilities to equal one,
>.(B) = 1 for each house. That this condition must hold for all houses
results from a fundamental trade-off in the likelihood function. In par-
ticular, an increase in any particular §, raises the probability that each
household in the sample chooses house A While this increases the
probability that the model correctly predicts the choice of the household
that actually resides in house 4, it decreases the probability that all the
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other households in the sample make the correct choice. In this way,
the first step of the estimation approach consists of choosing the inter-
action parameters that best match each individual with their chosen
house, while ensuring that no house is systematically more attractive
than any other house, according to the metric 3, (B’).”

Now that we have estimated the vector of mean indirect utilities in
the first step, the second step of the estimation approach involves de-
composing 6 into observable and unobservable components according
to the regression equation (5). Note that equation (5), which forms the
basis for the second-step regression in the estimation of the sorting
model, bears more than a passing resemblance to the hedonic price
regression shown in equation (1). In particular, moving price to the
left-hand side of equation (5) yields

1 1 1
Ph+_5h = %Xh—'—_ebh—’—_gh' (10)

Aoy &y Aoy 0p
Consequently, in the presence of heterogeneous preferences, the mean
indirect utility §, estimated in the first stage of the estimation procedure
provides an adjustment to the hedonic price equation so that the price
regression accurately returns mean preferences.

C. A Simple Example

To provide some intuition for the relationship between the coefficients
of equation (10), which provide a measure of mean preferences for
each attribute, and those of equation (1), which provide a measure of
the hedonic (equilibrium) price of each attribute, figures 5 and 6 char-
acterize a housing market equilibrium in two simple settings. Figure 5
illustrates a setting in which households value a single, discrete char-
acteristic such as a view of the Golden Gate Bridge. In the figure, the
downward-sloping line represents the marginal willingness to pay
(MWTP) curve for the households in the market. If only a few houses
in the market had a view, as represented by H,, the hedonic price of a
view would reflect the MWTP of a household with a relatively strong

* For any set of interaction parameters (those in \), a simple contraction mapping
can be used to calculate the vector & that solves the set of first-order conditions:
3, (P) =1 for all h For our application, the contraction mapping is simply &' =
8, —1In (2,P), where ¢ indexes the iterations of the contraction mapping. With this
contraction mapping, it is possible to solve quickly for an estimate of the full vector
6 even when it contains a large number of elements, thereby dramatically reducing the
computational burden in the first step of the estimation procedure. It is worth em-
phasizing that a separate vector & is calculated for each set of interaction parameters,
and at the optimum, this procedure returns the maximum likelihood estimates of the
interaction parameters and the vector of mean indirect utilities 6. A detailed discussion
of the asymptotic properties of & is presented in the Technical Appendix.
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Price ($) a
P
MWTPACIHVG/ Mean MWTP
v’
Pz*
H, H, " Number of Houses
With a View
F16. 5.—Demand for a view of the Golden Gate Bridge
Price ($) &
P
Pz*
P4*
13’5;k
Ps*

SS S, Sy S Ss  Se S, " Allocation of Houses
To Schools With
Quality {S,, ... S7}

F16. 6.—Demand for school quality

taste for a view, as indicated by p¥ in the figure. If, on the other hand,
a view were widely available, the price of the view would reflect the
MWTP of someone much lower in the taste distribution, as indicated
by p¥, for example. In general, the equilibrium price of a view is set by
the household on the margin of purchasing a house with a view and
will be a function of both its supply and the distribution of preferences.”

* See Epple (1987) and Ekeland et al. (2004) for illuminating discussions.
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This simple example makes clear a basic feature of the relationship
between hedonic prices and preferences: hedonic prices should reflect
mean preferences when households are homogeneous; in this case the
MWTP curve would simply be a horizontal line. This can also be seen
in our model. In particular, note that when households have homo-
geneous preferences (up to the independently and identically distrib-
uted error €)), the first-order conditions, >, (B’) = 1 for all A, imply that
the maximum likelihood estimates of §, must be identical (equal to a
constant K) for all houses. In this case, then, equation (5) can be re-
written as

0x

aoxX), — agppt 0, +& =K= P = a_Xh + Lebh + Lgh’ (11)
Qg ay, ay,
which is simply equation (1).” This equivalence makes clear that the
coefficient estimates from a hedonic price regression properly return
the mean marginal valuations of housing and neighborhood attributes
when heterogeneity in preferences is limited to only an idiosyncratic
component.™
The Golden Gate Bridge example also provides some intuition for
the way the adjustment to the hedonic price regression in equation
(10)—the mean indirect utility 6,—is determined. In particular, when
the number of houses with a view is small (H, in fig. 5), the majority
of households are not willing to pay the equilibrium (hedonic) price
to purchase a view. Thus the mean indirect utility provided by a house
with a view will be less than that provided by a house without one. In
essence, the goal of the first stage of the estimation procedure is to best
predict the location decisions observed in the data. Thus in this case,
in order to explain why the majority of households choose houses with-
out a view, the estimated values of 6, for houses with a view must be less
than those for houses without a view. This effectively lowers the value
of houses with a view on the left-hand side of equation (10), leading to
an estimated mean MWTP for a view that is lower than its hedonic price.
Of course, many housing and neighborhood characteristics are not
discrete but are supplied on a more continuous basis throughout a
metropolitan area. To gain some intuition for the relationship of the
hedonic price to preferences in this case, it is helpful to consider a
simple characterization of the equilibrium when households value only
a single location attribute (e.g., school quality) that varies across the

* The constant K is simply absorbed into the constant term.

* This condition holds no matter what assumption is made concerning the distribution
of the idiosyncratic error term. Prior research by Cropper et al. (1993) compares hedonic
and discrete-choice approaches. Unlike the current paper, their analysis looks at simulation
results rather than carrying out empirical estimation, and their discrete-choice model does
not include unobservable choice characteristics.
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neighborhoods of the metropolitan area. Figure 6 provides a graphical
depiction of this case. Because the Bay Area contains hundreds of
schools, the equilibrium difference in housing prices between each pair
of schools ranked according to quality is the MWTP of the household
on the corresponding threshold between schools. These equilibrium
prices are represented by the p* terms on the vertical axis. If there are
roughly an equal number of students in each school, averaging the
equilibrium price over all the houses in the sample corresponds roughly
to the mean MWTP of all households. Consequently, for attributes that
vary more continuously throughout the region, there is likely to be only
a slight difference between the mean preferences estimated in the het-
erogeneous sorting model and the coefficients of the hedonic price
regression.

D.  Forming an Instrument for Price

In addition to the vector of mean indirect utilities 6, from the first stage
of our analysis, a second piece of information is needed to estimate
equation (10). When this equation is written in the way it usually appears
in the industrial organization literature (as in eq. [5]), it is immediately
obvious that an instrument is needed to address the likely significant
correlation between housing prices and unobserved housing/neigh-
borhood quality, £,. To deal with this issue, we follow that literature
closely by deriving a variant of the standard instrument used in the
differentiated products demand literature.

The key insight from the industrial organization literature is that the
equilibrium price of any particular product will be affected not only by
its own quality but also by the availability of products that are close
substitutes for it. For example, while Ford could charge a considerable
markup on the Explorer when it initially faced very little competition
in the sport-utility vehicle category, its ability to do so declined with the
increased entry of other carmakers into the category. At the same time,
once a consumer makes a purchase, the characteristics of the alternative
set of products do not enter utility directly. In this way, the density of
competitors in the SUV category is assumed to have only an indirect
effect on utility through the price that the consumer must pay for an
Explorer.

The equivalent insight in a housing market context is that two iden-
tical houses in neighborhoods of identical quality may command very
different prices, depending on how they are situated relative to other
housing choices within the metropolitan area. Prices might vary because
of differences both in proximity to employment centers and in the
quality of nearby housing alternatives. For our application, we develop
an instrument for price that is based on the exogenous attributes of
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houses and neighborhoods that are located more than 3 miles away
from a given house, while allowing the attributes of houses and neigh-
borhoods within 3 miles of the house to directly affect utility.” In this
way, we assume that characteristics of houses and neighborhoods a siz-
able distance away influence the equilibrium in the housing market,
thereby affecting prices, but have no direct effect on utility.

To construct our instrument for price, we use a two-step procedure,
beginning by estimating equation (5) with a standard set of instrumental
variables. In particular, while including a full set of controls for the
characteristics of the house itself and its neighborhood, as well as five
variables that described land use,” in each of the 1-, 2-, and 3-mile rings
around the house, we instrument for price with a set of variables that
describe the housing stock and land use in rings greater than 3 miles
away. Given these initial estimates of the parameters of the utility func-
tion, we then construct a more powerful instrument by calculating the
predicted vector of market-clearing prices for a version of the model
that sets the vector of unobserved characteristics £ to zero.” Importantly,
the variation in the vector of market-clearing prices over and above the
variables already included as controls derives only from exogenous fea-
tures of the housing market in a region beyond 3 miles from a given
house; we use the model to concentrate this information into a single
instrument that accounts for the way these features are likely to affect
the equilibrium price of the house in question.

The traditional first stage of the instrumental variable estimation of
equation (5) is a price regression analogous to the hedonic price re-
gressions reported above in table 3 but that includes the constructed
instrument. In firststage estimates for both the 0.20- and 0.10-mile

* The application of the standard industrial organization instrumenting strategy in the
context of the housing market is complicated by the fact that households get utility not
only from the features of their own house but also from their surrounding neighborhood.
For this reason, we explicitly allow households to place value on the housing stock and
land use within 3 miles of their house. Hedonic price regressions estimated on our data
set imply that the availability of nicer neighborhoods inside a 3-mile radius has a positive
effect on prices, whereas the presence of nicer neighborhoods slightly further away has
a negative effect on house prices. Thus, within 3 miles the benefits of proximity to nicer
neighborhoods appear to dominate, whereas outside of 3 miles the competitive effect
appears to dominate. It is this competitive effect that we seek to isolate with our instru-
mental variable strategy.

* The land use variables include percent industrial, percent commercial, percent res-
idential, percent open space (lakes and parks), and percent other, all within given rings
surrounding the house in question.

" As shown in Bayer, McMillan, and Rueben (2004), the model developed in this section
can be used to characterize a sorting equilibrium with an additional assumption that prices
adjust to clear the market. To construct an instrument, we simply solve for the vector of
market-clearing prices that corresponds to what the model would predict, given an initial
estimate of the parameters and only the exogenous characteristics of houses and
neighborhoods.
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boundary samples, the instrument enters positively and very signifi-
cantly, with #statistics of 17.7 and 10.3, respectively.

E.  Summary of Estimation Procedure and Key Identifying Assumptions

To provide a complete picture of the assumptions maintained in our
analysis, table 6 summarizes each step of the estimation procedure (in
the left column) and highlights the corresponding assumptions needed
to identify the model parameters (in the right column).

If households had homogeneous preferences, then the estimation
procedure would reduce to a single step, as table 6 makes clear. Pref-
erences for housing, school, and neighborhood attributes could be re-
covered using a hedonic price regression that included boundary fixed
effects. Here, the boundary fixed effects and the observed school quality
would account for the correlation between neighborhood sociodemo-
graphics and unobserved neighborhood quality, whereas detailed con-
trols for neighborhood sociodemographics as well as boundary fixed
effects would account for the correlation between school quality and
neighborhood unobservables.

In the more general case in which households have heterogeneous
preferences, the first step of the estimation procedure recovers the het-
erogeneity parameters and the vector of mean indirect utilities by max-
imizing the probability that each household makes its observed housing
choice, appealing to revealed preference. Regressing mean indirect util-
ity on observables and boundary fixed effects, and instrumenting for
price, the second step returns mean preferences for housing, school,
and neighborhood attributes.

VI. Heterogeneous Sorting Model—Results
A.  Mean Preferences

The first row of table 7 reports estimates of mean preferences for four
specifications of equation (10). We focus again on results using the
sample of houses within 0.20 mile of a boundary since they are more
precise than the results using the sample within 0.10 mile. The estimated
mean preferences for average test score are almost identical to the
coefficients from the hedonic price regression. When boundary fixed
effects and neighborhood sociodemographics are included in the anal-
ysis, the estimated mean MWTP for school quality is $19.70 per month®
compared with the estimated effect of $17.30 on housing prices in the

* Though the mean direct effect of school quality on house prices estimated here
appears low, we note that an increase in school quality may have an additional indirect
effect on prices as households re-sort (see Bayer, Ferreira, and McMillan 2004).



TABLE 6
SUMMARY OF THE ESTIMATION PROCEDURE AND KEY IDENTIFYING ASSUMPTIONS

Step and Description of Estimation

Procedure

Key Identifying Assumptions

Heterogeneous Sorting Model

1.

Estimate vector of mean indirect utili-
ties, 8, and the interaction parameters
in N in eq. (4) via maximum likelihood

. Estimate instrumental variable regres-

sion of vector of mean indirect utility 6
on observable characteristics and
boundary fixed effects according to eq.
(5), using an instrumental variable for
housing price

a. Housing prices: Following industrial
organization literature, correlation
between housing price and unob-
served housing/neighborhood quality
addressed using instrument based on
exogenous characteristics of housing
stock and neighborhoods beyond a 3-
mile threshold

School quality: Correlation of school
quality and unobserved neighbor-
hood quality addessed by including
boundary fixed effects and detailed
controls for neighborhood sociode-
mographics

Neighborhood sociodemographics:
Correlation between neighborhood
sociodemographic composition and
unobserved neighborhood quality ad-
dressed by including boundary fixed
effects in the analysis

S

S

1. Identification is based on the notion of

revealed preference: the coefficients
are selected to maximize the probabil-
ity each household makes its observed
housing choice

2a. Exogenous features of housing stock

and land usage located more than 3
miles from a house affect housing price
through the market equilibrium but do
not affect utility directly

2b. (i) Housing characteristics vary contin-
uously across boundaries; (ii) measures
for neighborhood race/ethnicity, edu-
cation, and income included in regres-
sion control fully for sorting across
boundaries

2¢. (i) Housing characteristics vary contin-
uously across boundaries; (ii) variation
in neighborhood sociodemographics at
boundaries is fundamentally driven by
differences in school quality; (iii) aver-
age test score and other school charac-
teristics included in specifications con-
trol fully for differences in school
quality

Homogeneous Sorting Model: Hedonic Price Regression

—

Under the assumption of homoge-
neous preferences, estimation reduces
to hedonic price regression, given by
eq. (1). Boundary fixed effects are in-
cluded in the regression to account for
endogeneity of school quality and
neighborhood sociodemographics

1. See assumptions 25 and 2¢ above: the
same identifying assumptions for school
quality and neighborhood sociodemo-

graphics apply
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TABLE 7
DELTA REGRESSIONS: IMPLIED MEAN WILLINGNESS TO PAY
SAMPLE: WITHIN 0.20 MILE OF BOUNDARY (N = 27,458)

Boundary fixed effects included No Yes

A. Excluding Neighbor-
hood Sociodemographic

Characteristics
1) (2)
Average test score (in standard 97.3 40.8
deviations) (14.0) (5.5)

B. Including Neighbor-
hood Sociodemographic

Characteristics

(3) 4)
Average test score (in standard 18.0 19.7
deviations) (8.3) (7.4)
% block group black —404.8 —104.8
(41.4) (36.9)
% census block group Hispanic —88.4 —35
% block group with college de- 183.5 104.6
gree or more (26.4) (31.8)
Average block group income 30.7 36.3
(/10,000) (3.7) (6.6)

Note.—All regressions shown in the table also include controls for whether the house is
owner-occupied, the number of rooms, year built (1980s, 1960-79, pre-1960), elevation, pop-
ulation density, crime, and land use (% industrial, % residential, % commercial, % open space,
% other) in 1-, 2-, and 3-mile rings around each location. The dependent variable is the monthly
user cost of housing, which equals monthly rent for renter-occupied units and a monthly user
cost for owner-occupied housing, calculated as described in the text. Standard errors corrected
for clustering at the school level are reported in parentheses.

analogous hedonic price regression reported in column 2 of table 3. In
fact, this pattern—that the coefficients in the hedonic price regression
more or less capture mean preferences—holds for a number of the
other housing and neighborhood characteristics that vary throughout
the metropolitan area, included in the analysis but not reported here.
This pattern conforms to the intuition developed in figure 6 above.

In general, when the choice problem is viewed as single-dimensional,
one would expect the hedonic price regression to diverge from mean
preferences only for choice characteristics that vary less continuously
throughout the metropolitan region or that may be in limited supply.
Notably, in our analysis, estimated mean preferences differ from the
corresponding coefficient in the hedonic price regression for neigh-
borhood race. As in the hedonic price regressions, the inclusion of
boundary fixed effects substantially reduces the magnitude of the esti-
mated mean MWTP of all the neighborhood sociodemographic char-
acteristics. Yet even when fixed effects are included, the estimated mean
MWTP from our sorting model for black neighbors remains significantly
negative, —$104 per month, and statistically significant.
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TABLE 8
HETEROGENEITY IN MARGINAL WILLINGNESS TO PAY FOR AVERAGE TEST SCORE AND
NEIGHBORHOOD SOCIODEMOGRAPHIC CHARACTERISTICS

NEIGHBORHOOD SOCIODEMOGRAPHICS

AVERAGE Block Group
TesT Average
SCORE +10% Black  +10% College- Income
+1SD vs. White Educated +$10,000
Mean MWTP 19.69 —10.50 10.46 36.3
(7.41) (3.69) (3.18) (6.60)
Household income 1.38 —1.23 1.41 .86
(+$10,000) (.33) (.37) (.21) (.12)
Children under 18 vs. 7.41 11.86 —16.07 2.37
no children (3.58) (3.03) (2.25) (1.17)
Black vs. white —14.31 98.34 18.45 —1.16
(7.36) (3.93) (4.52) (2.24)
College degree or 13.03 9.19 58.05 31
more vs. some col- (8.57) (3.14) (2.33) (1.40)

lege or less

NoTe.—The first row of the table reports the mean marginal willingness to pay for the change reported in the column
heading. The remaining rows report the difference in willingness to pay associated with the change listed in the row
heading, holding all other factors equal. The full heterogeneous choice model includes 135 interactions between nine
household characteristics and 15 housing and neighborhood characteristics. The included household characteristics
are household income, the presence of children under 18, and the race/ethnicity (Asian, black, Hispanic, white),
educational attainment (some college, college degree or more), work status, and age of the household head. The
housing and neighborhood characteristics are the monthly user cost of housing, distance to work, average test score,
whether the house is owner-occupied, number of rooms, year built (1980s, 1960-79, pre-1960), elevation, population
density, crime, and the racial composition (% Asian, % black, % Hispanic, % white) and average education (% college
degree) and household income for the corresponding census block group. Standard errors are reported in parentheses.

That hedonic prices diverge from mean preferences in the case of
neighborhood race is consistent with the notion that households can
self-segregate on the basis of race without requiring any equilibrium
price differences across neighborhoods. In this case, mean preferences
for black neighbors would be negative because the majority of the pop-
ulation (around 60 percent of our boundary samples) is white, whereas
the hedonic price regression would simply reflect the fact that a sorting
equilibrium can be achieved without race being capitalized into housing
prices. The estimated heterogeneity in preferences for neighborhood
race is entirely consistent with this explanation; we now turn to a dis-
cussion of these heterogeneity parameters.

B.  Heterogeneity in Preferences

Table 8 reports the implied estimates of the heterogeneity in MWTP
for the average test score and neighborhood sociodemographic char-
acteristics across households with different characteristics for our pre-
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ferred specification, which includes both neighborhood sociodemo-
graphic characteristics and boundary fixed effects.”

The estimates of the heterogeneity in the MWTP for neighborhood
sociodemographic characteristics reveal a fascinating asymmetry: while
all households prefer to live in higher-income neighborhoods conditional
on neighborhood income, households prefer to self-segregate on the basis
of both race and education. In particular, the estimates imply that col-
lege-educated households are willing to pay $58 per month more than
those without a college degree to live in a neighborhood that has 10
percent more college-educated households. When combined with the
estimated mean MWTP of $10 per month reported in the first row, this
estimate implies that households at each level of educational attainment
prefer neighbors with like education levels: while college-educated
households would pay an additional $32 per month to live in a neigh-
borhood that had 10 percent more college-educated households, house-
holds without a college degree would actually need compensating to live
in a neighborhood with 10 percent more college-educated neighbors,
to the tune of $26 per month. Note that the preference for self-segre-
gation on the basis of educational attainment is somewhat stronger for
college-educated households.

Similarly, the heterogeneity estimates imply that blacks are willing to
pay $98 more per month than whites to live in a neighborhood that
has 10 percent more black versus white households. The mean MWTP
for such an increase is —$10.50 per month, primarily reflecting the
negative valuation of the white majority. Thus $98 is the difference
between the positive MWTP of black households for this change and the
negative MWTP of white households, indicating that households have
strong self-segregating racial preferences.*

When we focus on the heterogeneity in tastes for school quality, a
household’s willingness to pay increases with income, the presence of
children, education, employment, and age. Blacks have a significantly
lower willingness to pay for school quality relative to whites, although
this may be related to unobservable factors such as the substantial degree
of wealth inequality across races. The presence of children increases
demand for school quality. That it does not increase demand by a greater

* The full heterogeneous choice model includes 135 interactions between nine house-
hold characteristics and 15 housing and neighborhood characteristics. In table 8, we report
the MWTP only for test scores and sociodemographics that correspond to the core of our
analysis. The full set of included variables is listed in the note to table 8.

* It is also important to point out that these interactions pick up any direct preferences
for living near others of the same race (e.g., a recent immigrant from China may want
to interact with neighbors who also have immigrated to the United States from China)
as well as any unobservable neighborhood or housing amenities valued more strongly by
households of this group (e.g., recent immigrants from China may have similar tastes for
shops, restaurants, and other neighborhood amenities).
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amount may reflect the fact that the presence of children also raises
the desired levels of other forms of consumption. The parameter esti-
mates not presented in the table, for example, reveal that households
with children have a much greater demand for larger houses.

As one might expect, increases in household income and education
(which may proxy better for lifetime income) are associated with in-
creased demand for better schools. They are also associated with higher
demand for more educated and higher-income neighbors. We discuss
possible consequences of this configuration of preferences in the next
subsection.

C.  Discussion

Taken together, the estimates of the heterogeneous sorting model reveal
a number of key findings. First, the estimated mean preferences for
housing and neighborhood characteristics that vary more or less con-
tinuously throughout the metropolitan area closely resemble the esti-
mates of a simple hedonic price regression. This suggests that the es-
timated coefficients for these types of variable in a hedonic price
regression may generally be interpreted not only as a measure of the
implicit price of a particular attribute in the housing market but also
as a reasonable estimate of mean preferences. This additional interpre-
tation of some of the coefficients from hedonic price regressions is
reassuring given that it is generally difficult to obtain the kind of data
necessary to estimate the heterogeneous model presented here—that
is, data that precisely match households to their houses and
neighborhoods.

Second, the estimates of the heterogeneous model of sorting along
with the hedonic price regression results reported in Section III tell a
coherent story regarding the role of race in the housing market. In
particular, they suggest that (i) neighborhood race is strongly correlated
with unobserved housing and neighborhood quality, (ii) households
have strong self-segregating preferences, and (iii) neighborhood race
may not be directly capitalized into housing prices since neighborhood
price differences are not required to clear the market.

The results also reveal a similar pattern for neighborhood education,
implying both that households prefer to self-segregate on the basis of
education and that the average education of a neighborhood tends to
be highly correlated with unobserved neighborhood quality. Taken to-
gether, however, the results tell a very different story for neighborhood
income, implying that all households place significant value on richer
neighbors.

Finally, the particular combination of heterogeneous preferences for
school quality (with better-educated and higher-income households hav-
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ing higher demands) and heterogeneous preferences for neighbors
(with better-educated households having strong preferences for living
with highly educated neighbors) suggests that exogenous changes in
school quality may have compounding general equilibrium effects. In
particular, an exogenous change in school quality would be likely to
have both a direct effect on housing prices associated with preferences
for higher school quality and indirect effects, as households re-sorted.
Our estimates suggest that the improvement in a given school’s quality
would disproportionately attract more highly educated households to
the neighborhood, in turn making the neighborhood even more at-
tractive to higher-income, highly educated households, and raising
house prices further. Such second-round “social multiplier” effects on
prices could potentially be greater than the direct effect.”!

VII. Conclusion

Household sorting induces correlations among observed and unob-
served neighborhood attributes, making it difficult to infer the nature
of the preferences that drive the sorting process. Given the scarcity of
research designs that deal effectively with the resulting endogeneity
problem, the boundary discontinuity design has attracted widespread
attention, providing a straightforward way to estimate the value of amen-
ities (such as school quality) that vary discontinuously across well-defined
boundaries.

Yet sorting has several implications for the use of the boundary dis-
continuity approach, as we have argued. First, discontinuous local amen-
ities are likely to generate sorting with respect to the boundary, so
neighborhood sociodemographics also vary discontinuously there. This
implies that any house price differences across boundaries are likely to
overstate the value of the discontinuous local amenity and that better
estimates can be achieved by controlling carefully for the characteristics
of immediate neighbors. Second, to the extent that researchers can
control for the fundamental source of the sorting at the boundary—in
our case, differences in school quality—any variation in neighborhood
sociodemographics across boundaries is likely to be close to uncorre-
lated with unobserved housing and neighborhood attributes. Thus a
BDD provides a reasonable way to address the challenging endogeneity
of neighborhood sociodemographics.

Sorting also indicates that households are heterogeneous in their

*! The preference estimates from the current analysis provide an important input when
examining these issues. In related work (see Bayer, Ferreira, and McMillan 2004), we use
general equilibrium simulations based on the estimates reported in this paper to explore
the size of social multiplier effects associated with increases in school quality as households
re-sort.
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willingness to pay for housing and neighborhood attributes. At the heart
of the analysis, we develop a heterogeneous sorting model that embeds
a BDD, showing how this approach can be used to identify the full
distribution of household preferences for housing and neighborhood
attributes. Taking advantage of unusually rich data from the Bay Area,
the analysis shows clearly that households sort with respect to school
attendance zone boundaries and that ordinary least squares estimates
of the capitalization of neighborhood sociodemographics into housing
prices are significantly overstated, because of the correlation of these
characteristics with unobserved neighborhood quality. Conditional on
income, the results also imply that households prefer to self-segregate
on the basis of education and especially race.

This sorting model provides a natural device for exploring the general
equilibrium implications of our preference estimates, using counter-
factual simulations. In an education context, these would complement
recent research that has used calibrated equilibrium models to simulate
policy changes, uncovering interesting general equilibrium effects in
the process (see Epple and Romano 1998; Nechyba 1999, 2000; Fer-
nandez and Rogerson 2003). An appealing feature of the current frame-
work is that it permits the direct estimation of a broad range of pref-
erence parameters influencing the sorting process, with the potential
to improve our understanding of policy reforms and the workings of
the urban economy more widely.

Appendix A

Data Appendix
A.  Census Variables
1.  House Prices

This section describes the construction of the house price variable used in our
analysis, based on the self-report from the restricted-access version of the census,
combined with other census and external data.

While the houses sampled in the census have the advantage of being repre-
sentative and the sample sizes are huge, the house values reported in the census
are subject to three potential problems: they are self-reported and may be subject
to misreporting, they are tabulated in intervals, and they are top-coded. In light
of these potential problems, we have generated a predicted house price measure
using interval regression to deal with the categorical nature of the reported
house value variable as well as the top-coding, and to refine the information
contained within the self-report. Before describing the construction of the house
price, we discuss the three potential problems briefly.

1. Misreporting—Because house values are self-reported in the census, it is
difficult to ascertain whether these prices represent the current market value
of the property, especially if the owner purchased the house many years earlier.
Fortunately, the census also contains other information that helps us to shed
light on this issue. Owners report a continuous measure of their annual property
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tax payment. The rules associated with Proposition 13 imply that the vast majority
of property tax payments in California should represent exactly 1 percent of
the transaction price of the house in excess of $7,000 at the time the current
owner bought the property or in 1978 (whichever period is more recent). Com-
bining information about property tax payments and the year in which the owner
bought the house (also provided in the restricted-access version of the census
in relatively small ranges), we are able to construct a measure of the rate of
appreciation implied by each self-report.

2. Tabulation in intervals—The coding of the house price variable in the census
involves restricting the variable to fall within one of 26 bands. For our purposes,
a continuous point estimate is preferable. Because the property tax payment
variable is continuous, it provides useful information in distinguishing the values
of houses within intervals, in conjunction with a host of other housing and
neighborhood characteristics available in the census.

3. Top-coding—House values reported in the census are top-coded at $500,000,
a restriction that is binding for many houses in California, even in 1990. Again,
because the property tax payment variable is continuous and is not top-coded,
it provides information useful in distinguishing values in the upper tail of the
value distribution.

2. House Price Measure

Using the self-reported values, we estimate interval regressions, which generalize
the Tobit, for each of the 45 PUMAs in the Bay Area. In each case, we control
for a number of housing characteristics, including the number of rooms, number
of bedrooms, type of structure (single-family detached etc.), and age of the
housing structure, as well as a series of neighborhood controls. We also include
interactions of the property tax with tenure variables (in order to capture the
effects of Proposition 13 on house prices) and interactions of the property tax,
tenure variables, and a dummy for the household head being 55 years of age
or more (capturing the effects of Propositions 60 and 90 in California). We then
calculate the predicted house values using the estimates from the interval re-
gressions, conditional on being in the same interval as the self-reported value.

3. Rental Value

While rents are presumably not subject to the same degree of misreporting as
house values, it is still the case that renters who have occupied a unit for a long
period of time generally receive some form of tenure discount. In some cases,
these may arise from explicit rent control, but implicit tenure discounts generally
occur in rental markets even when formal rent control is not in operation. Thus
while this type of discount will not lead to errors in responding to the census
rental value question, it may lead to an inaccurate comparison of rents faced
by households if they needed to move. In order to get a more accurate measure
of the market rent for each rental unit, we utilize a series of locally based hedonic
price regressions in order to estimate the discount associated with different
durations of tenure in each PUMA within the Bay Area.

In order to get a better estimate of market rents for each renter-occupied
unit in our sample, we regress the log of reported rent R; on a series of dummy
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variables that capture the tenure of the current renter, y,, as well as a series of
variables that characterize other features of the house and neighborhood X:

log (R/) = 61)’/ + BzX/ tv, (A1)

again running these regressions separately for each of the 45 PUMAs in our
sample. To the extent that the additional house and neighborhood variables
included in equation (Al) control for differences between the stock of rental
units with long-term versus short-term tenants, the 8, parameters provide an
estimate of the tenure discount in each PUMA.* In order to construct estimates
of market rents for each rental unit in our sample, we then inflate rents on the
basis of the length of time that the household has occupied the unit using the
estimates of 3, from equation (Al).

4. Calculating Cost per Unit of Housing across Tenure Status

In order to make owner- and renter-occupied housing prices comparable in our
analysis, we need to calculate a current rental value for housing for both owned
and rented units. Because house prices reflect expectations about the future
rents on the property, they incorporate beliefs about future housing apprecia-
tion. To appropriately deflate housing values, and especially to control for dif-
ferences in expectations about appreciation in different segments of the Bay
Area housing market, we regress the log of house price (whether monthly rent
or house value) II; on an indicator for whether the housing unit is owner-
occupied, o, and a series of additional controls for features of the house, in-
cluding the number of rooms, number of bedrooms, type of structure (single-
family detached, unit in various-sized buildings, etc.), and age of the housing
structure, as well as a series of neighborhood controls, all included in X:

log (IL) = v10;+ 7. X; + 7. (A2)

We estimate a series of hedonic price regressions of this form for each PUMA
in the Bay Area housing market. These regressions return an estimate of the
ratio of house values to rents for each of these subregions, and we use these
ratios to convert house values to a measure of current monthly rent.

B.  External Data

We next discuss the additional data we have added to the Census data set, linked
to census blocks in our restricted-access data.

1. School and School District Data

The Teale Data Center provided a crosswalk that matches all census blocks in
California to the corresponding public school district. We have further matched
census blocks to particular schools using procedures that take account of the
location (at the block level) of each census block within a school district and
the precise location of schools within the district, using information on school

* Interestingly, while we estimate tenure discounts in all PUMAs, the estimated tenure
discounts are substantially greater for rental units in San Francisco and Berkeley, the two
largest jurisdictions in the Bay Area that had formal rent control in 1990.
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locations from the Department of Education. Other school information in these
data includes the following:

* The 1992-93 California Learning Assessment System (CLAS) data set pro-
vides detailed data about school performance and peer group measures.
The CLAS was a test administered in the early 1990s that gives us infor-
mation on student performance in mathematics, reading, and writing for
grades 4, 8, and 10. This data set presents information on student char-
acteristics and grades for students at each school overall and across different
classifications of students, including by race and education of parents.

* 1991-92 California Board of Education data sets, including data from the
school information form, which provides information on the ethnic/racial
and gender makeup of students; the professional assessment information
form (a teacher-based form that provides detailed information about
teacher experience, education, and certification and information on the
classes each teacher teaches); and a language census that provides infor-
mation on the languages spoken by students with limited English
proficiency.

2. Procedures for Assigning School Data

While we have an exact assignment of census blocks to school attendance zones
for around a third of the schools in the Bay Area, we employ an alternative
approach to link each house to a school for our full sample. A simple procedure
would assign each house to the closest school within the appropriate school
district. Our preferred approach, which we use to generate the house-school
match for our full data set, refines this closestschool assignment by using in-
formation about individual children living in each census block—their age and
whether they are enrolled in a public school. In particular, we modify the closest-
school assignment by matching the observed fourth-grade enrollment for every
school in every school district in the Bay Area. When one adjusts for the sampling
implicit in the long form of the census, the “true” assignment of houses to
schools must give rise to the overall fourth-grade enrollments observed in the
data.

These aggregate enrollments provide the basis for the following intuitive pro-
cedure: we begin by calculating the five closest schools to each census block. As
an initial assignment, each census block and all the fourth graders in it are
assigned to the closest school. We then calculate the total predicted enrollment
in each school and compare this with the actual enrollment. If a school has
excess demand, we reassign census blocks out of that school’s syntheticattendance
zone (recalling that we do not know the actual attendance zones for two-thirds
of the schools in the Bay Area); in contrast, if a school has excess supply, we
expand the school’s attendance zones to include more blocks.

To carry out this adjustment, we rank schools on the basis of (the absolute
value of) their prediction error, dealing with the schools that have the greatest
excess demand/supply first. If the school has excess demand, we reassign the
census block that has the second-closest school (having recorded the five closest
schools in each census block, in order), as long as that second school has excess
supply. If a school has excess supply, we reassign to it the closest census block
currently assigned to a school with excess demand. We make gradual adjust-
ments, reassigning one census block from each school in disequilibrium each
iteration. This gradual adjustment of assignments of census blocks to schools
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continues until we have “market clearing” (within a certain tolerance) for each
school. Our actual algorithm converges quickly and produces plausible adjust-
ments to the initial, closest-school assignment.

Land use—Information on land use/land cover is collected by the U.S. Geo-
logical Survey and converted to ARC/INFO by the Environmental Protection
Agency (available at http://www.epa.gov/ost/basins/) for 1988. For each census
block, we have calculated the percentage of land in radii of 0.25, 0.5, 1, 2, 3,
4, and 5 miles used for commercial, residential, industrial, forest (including
parks), water (lakes, beaches, reservoirs), urban (mixed urban or built-up),
transportation (roads, railroad tracks, utilities), and “other” uses, respectively.

Crime data.—Information on crime was drawn from the rankings of zip codes,
on a scale of 1-10 measuring the risk of violent crime (homicide, rape, or
robbery). A score of 5 is the average risk of violent crime and a score of 1
indicates a risk one-fifth of the national average and so forth. These ratings are
provided by CAP Index and were downloaded from APBNews.com.

Geography and topography—The Teale Data Center provided information on
the elevation and latitude and longitude of each census block.

Appendix B
Technical Appendix: Asymptotic Properties of the Estimator

Our sorting model fits within a class of models for which the asymptotic distri-
bution theory has been developed. In this Technical Appendix, we summarize
the requirements necessary for the consistency and asymptotic normality of our
estimates and provide some intuition for these conditions.

In general, there are three dimensions in which our sample can grow large:
H (the number of housing types), N (the number of individuals in the sample),
or C (the number of nonchosen alternatives drawn for each individual).*

For any set of distinct housing alternatives of size H and any random sampling
of these alternatives of size C, the consistency and asymptotic normality of the
first-stage estimates (9, 6,) follow directly as long as N grows large. This is a key
result of McFadden (1978), justifying the use of a random sample of the full
census of alternatives.

If the true vector é were used in the second stage of the estimation procedure,
the consistency and asymptotic normality of the second-stage estimates 6, would
follow as long as H— .* In practice, ensuring the consistency and asymptotic
normality of the second-stage estimates is complicated by the fact that the vector
0 is estimated rather than known. Berry et al. (2004) develop the asymptotic
distribution theory for the second-stage estimates 0; for a broad class of models
that contains our model as a special case, and consequently we employ their
results. In particular, the consistency of the second-stage estimates follows as
long as H— % and N grows fast enough relative to H such that Hlog H/N goes
to zero, and asymptotic normality at rate VH follows as long as H% N is bounded.
Intuitively, these conditions ensure that the noise in the estimate of é becomes
inconsequential asymptotically and thus that the asymptotic distribution of ; is
dominated by the randomness in £, as it would be if 6 were known.

** As described in McFadden (1978), an attractive aspect of the independence of irrel-
evant alternatives property for each individual is that we can estimate the multinomial
logit model using only a sample, C, of the alternatives not selected by the individual. This
permits estimation despite having many alternatives, i.e., many distinct house types.

* This condition requires certain regularity conditions. See Berry etal. (2004) for details.
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Given that the consistency and asymptotic normality of the second-stage es-
timates require the number of individuals in the sample to go to infinity at a
faster rate than the number of distinct housing units, it is important to be clear
about the implications of the way we characterize the housing market in the
paper. In particular, we characterize the set of available housing types using the
1-in-7 random sample of the housing units in the metropolitan area observed
in our Census data set. Superficially, this characterization seems to imply that
the number of housing types is as great as the number of households in the
sample, which appears at odds with the requirements for establishing the key
asymptotic properties of our model. It is important to note, however, that the
housing market may be characterized by a much smaller sample of houses, with
each true house type showing up many times in our large sample.

Consider, for example, using a large choice set of 250,000 housing units, when
the market could be fully characterized by 25,000 true house types, with each
true house type showing up an average of 10 times in the larger choice set. On
the one hand, the 250,000 observations could be used to calculate the market
share of each of the 25,000 true house types, with market shares averaging
1/25,000 and the second-stage 6 regressions based on 25,000 observations. On
the other hand, separate market shares equal to 1/250,000 could be attributed
to each house observed in the larger sample and the second-stage regression
based on the larger sample of 250,000. These regressions would return exactly
the same estimates since the former regression is a direct aggregation of the
latter. What is important from the point of view of the asymptotic properties of
the model is not that the number of individuals increases faster than the number
of housing choices used in the analysis, but rather that the number of individuals
increases fast enough relative to the number of truly distinct housing types in
the market. That this requirement is met seems reasonable.
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TABLE C2
CoMPARING HEDONIC PRICE COEFFICIENTS IN FULL AND BOUNDARY SAMPLES

Sample: Within 0.20 Sample: Within 0.10
Full Sample Mile of Boundary Mile of Boundary

(N = 242,100) (N = 27,548) (N = 15,122)
Boundary fixed effects
included No No No
A. Excluding Neighborhood Sociodemographic
Characteristics
(1) (3) ()
Average test score (in 129.6 123.7 126.5
standard deviations) (8.8) (13.2) (12.4)
R .50 .54 .54
B. Including Neighborhood Sociodemographic
Characteristics
(2) (4) (6)
Average test score (in 35.3 34.8 44.1
standard deviations) (6.5) (8.1) (8.5)
% census block group —183.0 —99.8 —123.1
black (24.9) (33.4) (32.5)
% block group with col- 281.8 220.1 204.4
lege degree or more (42.1) (39.9) (40.8)
Average block group in- 64.5 60.0 55.6
come (/10,000) (3.0) (4.0) (4.3)
R .59 .59 .59

NoTE.—All regressions shown in the table also include controls for whether the house is owner-occupied, the number
of rooms, year built (1980s, 1960-79, pre-1960), elevation, population density, crime, and land use (% industrial, %
residential, % commercial, % open space, % other) in 1-, 2-, and 3-mile rings around each location. The dependent
variable is the monthly user cost of housing, which equals monthly rent for renter-occupied units and a monthly user
cost for owner-occupied housing, calculated as described in the text. Standard errors corrected for clustering at the
school level are reported in parentheses.
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