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1 Introduction

Using a popular web mapping and transportation service, we generate information for more

than 57 million simulated trip instances by motor vehicle in 180 large Indian cities. We

leverage a number of alternative data sources, including data on actual trips, to verify the

reliability of our simulated trips. We use these trips to estimate indices of mobility (speed)

in these cities. The indices that we develop provide a novel decomposition of overall speed

into uncongested speed and the congestion delays caused by traffic. This decomposition

allows us to compare the importance of uncongested speed with that of congestion in

generating speed variation across cities. Then, we examine how population, roadway

characteristics, geography, and indicators of urban economic development correlate with

speed, uncongested speed, and congestion delays. Finally, we consider walking and transit

trips, and we replicate most of this investigation in the United States.

To the best of our knowledge, our paper provides the first systematic multi-city inves-

tigation of urban travel in a developing country.1 Our main substantive findings are the

following. First, there are large differences in speed across Indian cities. A factor of nearly

two separates the fastest and slowest cities. To illustrate this, figure 1 plots the speed of

travel by motorized vehicles throughout the day in a particularly fast (large) Indian city,

Thrissur, and in a particularly slow city, Kolkata.

Second, variation in speed across cities is driven primarily by uncongested speed, not

by congestion delays. In figure 2, we observe on average mild variation across hours of

the day for our sample of 180 cities. A very poor city like Santipur in West Bengal is

slower than average at all times, even at night in the absence of traffic. We see instead

wider intra-day differences in speed in the largest cities, particularly close to their center, as

illustrated by Mumbai in the figure. While Mumbai is slow because it is highly congested,

especially around its center, it is the exception, not the rule. More generally, an index of

uncongested speed explains more than 50% of the variance in overall speed across cities.

Simple welfare computations suggest that gains from a 10% improvement in uncongested

speed—which we find is about one standard deviation of the uncongested speed distribution

across cities—are much larger than existing estimates of the gains from optimal congestion

1Two new studies focusing on a single developing city complement our cross-city investigation: Kreindler
(2018) studies the welfare impact of congestion pricing in Bangalore, and Akbar and Duranton (2018) measure
the cost of congestion in Bogotá.
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Figure 1: Speed throughout the day, two Indian vs. two us cities
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Mean speed for trips with length between 5 and 10 kilometers. New York and Kolkata are the slowest, and
Kansas City and Thrissur the fastest, cities with a population over one million in their country according to
our calculations described in sections 3 and 4 below.

Figure 2: Speed throughout the day in India
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pricing. These findings challenge the conventional wisdom that traffic congestion is the

main reason why some cities are slow and some are fast. To take one prominent example,

a recent report by the Boston Consulting Group (bcg; Chin et al., 2018) claims that Kolkata

has the most traffic congestion among the four largest Indian cities. We find that Kolkata

is in fact the least congested of the four, but the slowest because of low uncongested speed.

This distinction has important policy implications, because uncongested speed cannot be

improved by congestion pricing, ride-sharing promotion or restriction, or other policies

often proposed to combat congestion.

Third, travel is generally slow in Indian cities, even outside peak hours. In addition

to Thrissur and Kolkata, figure 1 also plots comparable speed data for the corresponding

fastest us city with population above one million, Kansas City, and the slowest one, New

York. Even the slowest large us city is generally faster than the fastest Indian city, Thrissur.

Finally, we find that denser, more populated cities are slower, that there is a hill-shaped

relationship between city per capita income and speed, and that a city’s speed is related to

its geography and road network. Specifically, cities that are flatter, with fewer waterbodies,

more roads and streetlights, and a more gridded network are faster.

This investigation is important for three reasons. First, there is an extreme paucity of

useful knowledge about urban transportation, especially in developing countries. As a

first building block towards a more serious knowledge base on urban transportation, some

stylized facts are needed.2 For instance, we need to know how slow travel is in developing

cities beyond the anecdotal evidence offered by disgruntled travelers. Equally important

objects of interest are the differences between cities, between different parts of the same

city, across times of day within the same city, and across days of the week for the same trip

(reliability).3 We hope that our results, methodology, and data can help guide policy and

future research on urban transportation in developing countries.

Second, there is a popular view that urbanization and economic development lead to

2In richer countries, much of our knowledge stems from representative surveys of household travel behav-
ior. These surveys nonetheless have clear limitations, including a lack of precision in what travelers report.
They are also prohibitively expensive to carry out broadly in developing countries. For the us, the Bureau
of Transportation Statistics reports a cost per household of perhaps $300 to produce the National Household
Transportation Survey or about $40 million in total (see http://onlinepubs.trb.org/onlinepubs/reports/

nhts.pdf, last accessed, 22 April 2020.)
3Several software and data services such as Inrix and TomTom propose popular measures of congestion for

a large sample of world cities. These services do not make the details of their methodology public. It seems
that they monitor either specific roads or average traffic speed. We show below that measures of average speed
are problematic and perform poorly. Uber Mobility provides travel times for a smaller sample of cities (just 5

in India). We argue below that they lead to substantial overestimates of speed.
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ever larger cities and increased rates of motorization, and that these two features will

eventually lead to complete gridlock. We do find evidence of congestion in the largest

Indian cities. However, economic development also brings about better travel infrastructure

which facilitates uncongested mobility.

Third, urban transportation in developing countries is prioritized for massive invest-

ments. For instance, transportation is the largest sector of lending by the World Bank and

represents more than 18% of its net commitments as of 2019. Among the many problems

that these investments are trying to remedy, the lack of urban land devoted to the roadway is

widely perceived to be a chief cause behind slow speed and urban congestion. Providing an

assessment of the determinants of speed to guide policy is thus fundamental. For instance,

we find suggestive evidence that higher travel speeds in Indian cities are associated with a

more regular grid network and more major roads.

Our investigation raises three challenges. The first is methodological. We propose a new

approach to measure travel speed from trip information, and to decompose travel speed into

uncongested speed and delays caused by congestion. The second is a travel data challenge.

There is no comprehensive source of data about urban transportation in Indian cities. Our

approach is to collect data on predicted travel time from a popular website, Google Maps

(gm).4 For each city, we designed a sample of trips and sampled each trip at different times

on different days. A key concern is that trips simulated on gm may not accurately represent

actual travel conditions in Indian cities. To address this concern, we perform a number

of exercises that demonstrate the reliability of gm as a source of travel data in a developing

country. In particular, we commissioned a smartphone app that records actual trips in many

Indian cities, and we compare trips from this app with trips simulated from gm. To further

demonstrate the reliability of our simulated trips, we show that our city speed indices

vary little across various trip sampling methodologies, type of trip destinations, origin and

direction of travel, or time of day. Finally, we face the challenge of consistently defining and

measuring the cities in which we sample simulated trips. To answer this challenge, we rely

on a wide variety of sources including the census of India, OpenStreetMap, and satellite

4https://google.com/maps, last accessed, 20 May 2021. A number of new studies, which we discuss later
in the paper, also use gm to measure traffic in a developing city, notably Kreindler (2016), Hanna, Kreindler, and
Olken (2017), and Akbar and Duranton (2018). Our approach, which we document explicitly in our replication
archive, allows for considerably larger scale data collection with gm. Alternative approaches include direct
gps records for particular vehicles such as taxis (Mangrum and Molnar, 2017) or sensors, which usually track
traffic only on the most important arterials (for instance, Geroliminis and Daganzo, 2008, Yang, Purevjav, and
Li, 2020).
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imagery.

2 Data collection

In this section we provide an overview of our data. Further details about our data sources

are in online Appendix A and Appendix B. The construction of the variables we use is

described in online Appendix C.

2.1 City sample and city-level data

United Nations (2019) reports the locations of the 181 cities in India that reached a pop-

ulation of 300,000 by 2018. We initially define the spatial extent of these cities as the

surrounding or nearest polygon composed of contiguous 1-kilometer grid cells characterized

as urban land circa 2014-15 in the Settlement Model (smod) of the Global Human Settlements

Layer (ghsl; Pesaresi and Freire, 2016). Where multiple United Nations (2019) cities fall

within the same polygon, we split the polygon following a procedure described in online

Appendix A. For trip sampling purposes we restrict attention to 40-meter pixels defined

as built-up in 2014 according to ghsl’s built-up layer (Corbane et al., 2018). Our final

city boundaries include a 500-meter buffer around the built-up pixels of each city. After

dropping one city (Thanjavur) for which the smod boundary is clearly inappropriate, we

are left with an estimation sample of 180 cities.

We compute city population from the 2011 census as the sum of underlying town/village

(fourth administrative level) populations, accounting for partial overlap. We use an analo-

gous approach for a variety of other variables from the 2011 Census (share of households

with a car or motorcycle, inventory of streetlights and paved and unpaved roads, and binned

average commute length for urban non-agricultural workers by mode and district, etc.) and

from the Employment and Unemployment Survey of the National Sample Survey (nss-eue)

2011–12 for earnings.

Using the same delineation of cities, we also measure the extent of their road network

by road class using data from OpenStreetMap via GeoFabrik and processed through osmnx

(Boeing, 2017). We develop a number of measures of shape for the road network in each

city. We also use OpenStreetMap to compute the length of rivers and coastlines in each city.

We collect weather variables from Meteostat to match our trip data, elevation data for all
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road intersections from gm’s elevation api, and nightlight satellite data. For comparison, we

also compute similar variables for a corresponding sample of 139 us metropolitan areas.

Online Appendix table C.1 reports summary statistics for our sample of Indian cities.

They are on average large, with a mean population over 1.2 million, and fast growing,

having more than doubled in population since 1990. There is substantial variation across

cities in road infrastructure stocks and rates of access to personal motorized transportation.

2.2 Trips data

We define a trip as an ordered pair of points (origin and destination) within the same city.

A trip instance is a trip taken at a specific time. Our target sample for city c is 15
√
Popc trips,

where Popc is the projected 2018 population of city c from United Nations (2019). We collect

21 trip instances per trip, to ensure variation across times of day and different days. For a

city with a population of one million, for instance, our sampling strategy thus targets 15,000

trips (7,500 in each direction between the trips’ endpoints) and 285,000 trip instances. All

trips are restricted to be at least one kilometer between origin and destination because gm

results are less reliable for very short trips, few of which we expect to be motorized anyway.

We collect about eight instances per trip across times of day to roughly match the weekday

distribution of actual trips in the 2009 us National Household Travel Survey (nhts). We

oversample sparse overnight periods, and sample weekends at half the rate of weekdays.

We collect about 13 additional instances of each trip at the same time of day as one of those

original eight (within a five minute window) to measure reliability.

We sample across four broad classes of trips, each designed to reflect key aspects of

urban travel: radial, circumferential, gravity, and amenity trips. Radial trips join a randomly

located point within 1.5 kilometers of a city’s center with another point in the city, either

approximately 2, 5, 10, or 15 kilometers away, or at a distance percentile drawn from a

uniform distribution. These trips are those predicted by the standard monocentric model

of cities. This model provides a reasonable first-order characterization of the distribution of

population, density, and land and house prices in cities of many countries (see Duranton

and Puga, 2015, for a survey).

Circumferential trips, orthogonal to radial trips, join a randomly located origin at least

2 kilometers from the city center with a destination at approximately the same radius but

displaced approximately 30 degrees clockwise or counterclockwise.
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Gravity trips join a random origin with a destination in a random direction, at a distance

that is drawn from a truncated Pareto distribution with shape parameter 1 and support

between 1 kilometer and 250 kilometers. Both commutes and city trips in general have been

shown to reflect this distance distribution in many contexts (e.g. Berlin (Ahlfeldt et al., 2015)

and Bogotá (Akbar and Duranton, 2018)).

Amenity trips join a random origin with a destination corresponding to one of 12 amenity

types (e.g. schools, recreation, religion). We systematically search Google Places for all

establishments of each type in a city to identify the most popular business categories

associated with them. Then, we use these categories as search keywords on gm to identify

the most “prominent” trip destination (according to gm) within a reasonable radius of each

trip origin. The weighting of trips across these amenity types is based on a mapping of

amenity types to trip purposes whose share we draw from the 2017 us nhts.

Using the sampling scheme above, we successfully simulated 57,103,181 trip instances

in gm, covering 1,366,566 location pairs and 2,730,969 trips across all cities and trip design

strategies between June 5 and November 13 of 2019.5 For each trip instance, we record

origin, destination, time/day, trip type, and estimated length in meters and duration in

seconds of gm’s recommended route under current traffic conditions (which we sometimes

refer to as real-time), as well as the duration required for the same route without traffic.6

For comparison, we also collect 52,158,502 trip instances in 139 cities in the us.

We use the ‘throughpoints’ provided by gm to characterize the route of a trip. Com-

bining this information about trip route with detailed data on the road network from

OpenStreetMaps, we compute the share of each trip that takes place on different classes

of roads (motorways, primary roads, etc), the number of intersections, and the number of

turns against traffic along the trip’s route. Using data on establishments from Google Places,

we compute the density of establishments along the trip’s route. We also use elevation data

to compute the gross slope up and down associated with each trip.

We also collect one instance of each trip via walking, which is time-invariant, and several

instances via transit. Walking unsurprisingly shows little variation in speed across cities, and

5In Appendix G, we show that we get essentially identical results about the speed of cities with a random
0.1% subsample. Our full sample is however necessary to show robustness to more directed subsampling.

6
gm’s estimated duration without traffic is consistent with the information we get by sampling each trip

approximately 21 times. Specifically, the correlation across all trips between gm’s log uncongested speed and
log speed of the fastest instance of a trip is 0.96 in our sample. The corresponding duration correlation is 0.99.
Overall sample means also match very well: the mean of gm’s estimated duration without traffic in minutes is
13.4, while the mean shortest duration of a trip is 13.3.
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Table 1: Trip statistics

percentile:
Mean St. dev. 1 10 25 50 75 90 99

Panel A: Sample: all trip instances (N=57,103,181)
Speed 23.6 6.9 11.6 15.6 18.6 22.7 27.5 32.7 43.8
Duration 15.7 12.7 3.6 6.0 8.2 12.1 18.4 29.1 67.7
Duration (no traffic) 13.8 10.3 3.4 5.6 7.5 10.9 16.1 25.4 55.0
Trip length 6.5 6.6 1.3 1.9 2.8 4.5 7.3 13.3 34.8
Effective length 4.4 4.8 1.0 1.3 1.8 2.9 4.9 9.8 24.5

Panel B: Sample: all cities (N=180)
Mean speed 24.1 3.8 14.9 19.2 21.8 24.0 26.3 29.4 34.0
Mean duration 13.9 3.9 8.4 10.3 11.3 12.8 15.2 19.4 30.0
Mean duration (no traffic) 12.4 3.2 7.6 9.4 10.1 11.6 13.6 16.9 23.8
Mean trip length 5.6 2.0 2.6 3.7 4.2 5.1 6.7 8.1 12.4
Mean effective length 3.8 1.3 1.9 2.5 2.8 3.5 4.6 5.5 8.2

Note: Durations are in minutes, lengths in kilometers; and speeds in kilometers per hour.

transit data are problematic for our purposes, because gm uses only scheduled, as opposed

to actual, transit times, and is restricted to formal transit. While we recognize that these

modes are important, particularly for poorer residents, we thus limit discussion to some

brief comments below and online Appendix A. Finally, we note that since within-city rail

is extremely limited in India, our measures of on-road travel are relevant to public transit

travel times as well.

Some basic trip statistics for Indian cities are reported in panel a of table 1. Mean travel

speed is 23.6 kilometers per hour, which is slow relative to the speeds reported for New

York City and Kansas City in Figure 1. That said, 23.6 kilometers per hour is faster than the

sometimes apocalyptic descriptions found in the popular press. Similar observations can

be made for trip duration and length. The average trip under actual traffic conditions lasts

about 14% longer than its counterpart without traffic. We keep in mind that we oversampled

trips taken at night and return to this issue below. Finally, the average trip is about 50%

longer than its “effective” (haversine) length.

Panel b reports naive mean city analogs of panel a statistics. We note considerable

differences in mean speed across cities. The standard deviation across cities is 3.8 kilometers

per hour, more than half the standard deviation across trips of 6.9 in table 1. Mean speed
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for the slowest city is 14.2 kilometers per hour whereas it is more than twice as high for the

fastest city at 34.4. We show below that these wide raw speed differences remain once we

adequately control for features of our sampling strategy.

2.3 Accuracy of Google Maps speed estimates

In this section we provide several pieces of evidence that gm’s estimates of trip speed are

accurate, even in small cities. First, we show that their source data are likely to have

excellent coverage. Next, we provide evidence of variation of travel time estimates over

time, suggesting that real-time data is used in general, even within small cities. We also

document variation in travel times during holidays and strikes that is consistent with gm

providing real-time data. Finally and most importantly, we compare the gm estimates to

actual trip speed data from other data sources.

gm’s speed estimates are based on the location and speed of mobile phones using the

Android operating system, as well as other phones running Google software, especially gm.

Accurate measurement thus requires that many drivers are providing information.

A natural concern is that travel times predictions are worse in cities with lower mobile

phone penetration. This is unlikely to affect our results. As of 2017, 63% of people across all

of urban India had smartphones (see online Appendix B for details of all web-based sources).

Given rapid growth from only 20% in 2013, this is surely an underestimate for 2019. In

setting up their phones, users may choose to opt out of sending information to Google.

However, the opt-out rate, which Google does not publish, would have to be extremely high

to affect our results. Crucially, to estimate slowed traffic on a block, gm only needs one

vehicle with a phone, and by definition, time-varying congestion implies many vehicles.

Put together, this suggests that all cities have enough phones to generate high-quality speed

estimates. Furthermore, using data from the gsm Association, we compute that more than

99% of the area of all sample cities had 2g (or better) coverage.

Even if gm has access to all of these data, it might not use them to provide real-time

traffic data, reporting instead modeled averages, perhaps especially in smaller cities. In

order to test for this, we looked for variation in trip duration (reported in seconds) and trip

length (reported in hundreds of meters) across instances of the same trip occurring at the

same time of day (within a 5-minute band) on a different weekday. We find that in the

average city, 97% of peak-time trips show variation across instances on different days within
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a five-minute time-of-day window. In no city does this value fall below 78%.7 We believe

that this is strong evidence that gm is using real-time traffic information to calculate travel

speed in all cities.

We also estimate differences in travel speed during public holidays and strikes that took

place during weekdays of our main data collection period, from June to November 2019. We

find that most public holidays are associated with statistically significant changes in travel

speed. In 75% of the cases, travel is faster during public holidays, typically between 0.5%

faster like a typical Saturday and 4.5% faster like a typical Sunday. The Ganesh Chaturthi

festival in various states accounts for about half the remaining cases for which travel is

slower. This festival is a major Hindu celebration, which in many parts of India is associated

with large processions. When we assess the effects of major strikes on travel speed in major

Indian cities, we find that, unlike public holidays, they are associated with slower traffic in a

majority of cases. Online Appendix B describes more precisely how we estimate the effects

of these events on speed and reports more detailed results. Overall they strongly suggest

that gm uses real-time data to simulate travel time.

To evaluate the accuracy of simulated gm trips in a broad set of cities, we collected

information on actual trips using an app designed for us by Intents Mobi, a mobile app

developer. We summarize this evaluation here, and provide detailed descriptions, figures,

and tables in online Appendix D. Our Intents app was available everywhere in India, and it

paid drivers per kilometer traveled, at a rate that was higher at night and in smaller cities.8

Our app asks drivers to record trip start and end, and collects driver geo-location at every

second in between. After collecting trips from early September to mid-December 2019, and

removing trips with implausible length or speed, we end up with 90,894 weekday trips

in 89 cities. This sample is too small for city-specific analysis, so we divide it into large

(population rank 1 to 20), medium (20 to 60), and small (over 60) cities.9

We first compare the speed of actual Intents trips to that of our sample of simulated trips.

We find that Intents trips are faster than simulated trips, with an especially large gap at

7For more than 90% of the pairs of instances of the same trip within a five-minute interval, the lengths
are within less than 1% of each of each other, suggesting that the variation in duration is not caused by some
randomization of routes by gm. Excluding the 20% of trips for which we observe a variation of less than 6

seconds makes no change to our results below. After discarding these trips and re-estimating our speed index
below, the correlation with our preferred speed index is 0.998.

8Intents recruited drivers through online ads targeted at frequent drivers, like Ola or Uber drivers. We did
not collect information about drivers.

9Many cities have very few trips. Delhi has a large sample of 35,500 trips, and 13 cities have samples
between 1,000 and 7,500 trips.
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night. This discrepancy occurs because Intents trips are much longer at night than during

the day, and longer trips tend to be faster than shorter trips. After conditioning out trip

length and distance to the city center (as in our main analysis described in Section 3), time

of day discrepancies disappear and our simulated and Intents samples display remarkably

similar time patterns throughout the day. However, Intents trips remain somewhat faster.

To explore this issue further, for each Intents trip we query a corresponding trip on gm

that starts at the same time of day and takes the same route. Comparing the speed of Intents

trips to their gm replications, we find remarkably similar speeds throughout the day.10 This

holds in all three city size bins, although results are noisier in small cities, where night time

trips are rare. Android phone users are orders of magnitude more numerous than users of

our app, so gm may still accurately measure speed at night in small cities. As an example

of how the Intents and gm data display similar variation over time and across cities, online

Appendix D shows that after controlling for trip characteristics, the average speed difference

between night time (11 pm to 6 am) and peak time (10 am to 2 pm and 4:30 pm to 9 pm) trips

in large cities is 29.4% in our main simulated gm sample, 28.0% in the Intents data, and

31.7% in the gm replication of Intent trips. In medium sized cities, the night time vs peak

time differences in these three samples is 20.5%, 21.9%, and 21.9%. Overall, this replication

exercise supports our use of gm to measure hourly speed patterns in Indian cities.

The other relevant source of information on the speed of a large number of actual trips we

are aware of is Kreindler (2018), who shows that trip speeds from gm are very close to speeds

for actual trips of both cars and motorcycles in Bangalore, measured with a custom-designed

smartphone app.

Finally, in online Appendix E, we also provide a comparison between our data and

information provided by Uber Movement about travel speeds in five large cities in our

sample. This comparison is complicated by the manner in which Uber Movement aggregates

its information. Instead of travel times of actual trips, Uber Movement reports times between

zones by averaging travel times from Uber trips that pass through these zones. As we show,

this greatly undersamples the beginnings and ends of trips, and these beginnings and ends

are considerably slower than the middle parts. Because of this, Uber Movement reports

speeds that are substantially faster than our trips. We show that we can nonetheless closely

10This suggests that the differences with our main sample of gm trips are due to the special nature of the
Intents sample. In particular, professional drivers may be reluctant to enter narrow residential roads. In
addition, and despite our best efforts we are not confident that the Intents data is well-partitioned into trips.
Replicating Intents trips directly greatly attenuates these problems.

11



approximate the speed figures obtained from Uber Movement data once we appropriately

distort our treatment of gm trip instances and, in particular, focus on travel speeds for the

middle parts of trips or only consider longer trips.

3 A methodology for measuring mobility

3.1 A general conceptual framework

We model travel as a consumption problem. Potential travelers select trips, such as errands

or commutes, from a large set of potential destinations and times, simultaneously with other

decisions about household location and vehicle ownership. Fully modeling this presents

intractable theoretical challenges and data requirements, so we drastically simplify it by

creating a price index measured for each city. This approach has three key features: a

chosen good (a trip), a price (inverse speed), and a consumption basket that is comparable

across cities.

In each city, we can consider a number of residential locations and attempt to measure

the cost of a ‘typical’ trip. The data requirements are still considerable but no longer

overwhelming. The pitfalls of this approach are the same as those associated with typical

price indices. Not knowing the preferences (or idiosyncratic prices) of households, it is

unclear how travel costs (i.e. the prices) should be aggregated.

To minimize these pitfalls, we will show that our speed indices do not depend on how

we weight different kinds of trips. This is because slower cities are slower at all times, for

all types of trips, and throughout the city. As a result, we need not rely on a particular

utility specification to tell us how to weight, say, a trip to the train station at peak hour on a

weekday relative to a trip to a shopping destination on the weekend.11

3.2 Measuring mobility

We want to measure the ease of going from an origin to a destination in cities. We focus

on the speed of road travel using a motorized vehicle. Data from the 2011 Indian census

11While generalized transportation costs involve money, time, and several dimensions of travel comfort and
travel conditions (Small and Verhoef, 2007), here we focus on travel time and reliability. This generalization
is not as extreme as it seems. First, if we think of travel time as home production and value it between
50% and 100% of the wage, as is customary in the literature, it represents a large share of the overall cost of
travel. Second, many other components of travel costs such as gas consumption and vehicle depreciation are
positively correlated with travel time. Safety however may be negatively correlated, though some features that
improve traffic flow may improve pedestrian safety.
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suggests that 46% of urban commutes, and 55% of urban commutes longer than 1 kilometer,

are by motorized road transport. Measuring the speed of travel in a city raises a number of

challenges since trips differ considerably in their length, location of origin and destination,

time and day of departure, and mode.

The simplest approach is to compute a measure of mean speed for a given city:

Smc =
∑i∈cDi

∑i∈c Ti
, (1)

where c denotes a city and i is a trip instance. Because we sum the length Di of all

trip instances in city c and divide by the sum of trip durations Ti, the ratio Smc is a

length-weighted measure of travel speed. It is straightforward to define the corresponding

unweighted mean.

Means are attractive because of their simplicity and ease of computation. However, means

may not be comparable across cities in our case. Most importantly, trip length and distance

to the center differ systematically across cities. As we show below, these characteristics

are important determinants of trip speed. We can condition them out by estimating the

following type of regression:

logSi = αX ′i + sfe
c(i)

+ εi , (2)

where the dependent variable is log trip speed (Si = Di/Ti), Xi is a vector of characteristics

for trip instance i, sfe
c(i)

is a fixed effect for city c, and εi is an error term.

If trip characteristics are appropriately centered and the errors are normally distributed,

Ŝfec = exp
(
ŝfec + φ̂2/2

)
is a measure of predicted speed for a typical trip in city c where φ̂

is the estimator of the standard deviation of the error term ε. Note that for simplicity we

often directly use the estimated city fixed effects, ŝfec , as an index of speed.

Equation (2) does not specify the exact content of the vector of characteristics X . For

now we simply note that the purpose of these controls is to ensure that we are comparing

like trips across cities, just as products in a city-level price index must be comparable across

cities. Somewhat more precisely, in estimating a city’s relative ability to supply fast travel,

we want to hold demand conditions constant. We defer discussion of individual controls to

section 4, where we also report results.

In online Appendix F, we consider more flexible variants of this model that allow the

intercept and vector of coefficients to vary across cities. We also estimate variants from

a broad class of mobility indices derived from logit (Ben-Akiva and Lerman, 1985) or ces

utility specifications. In particular, we develop a model in which travelers choose a departure

13



hour, and the city-specific ‘quality’ of each hour is calibrated to fit the hourly departure

shares in the Intents trip data.

It is important to keep in mind that the observations used to estimate equation (2) and

its variants are simulated trips, not actual trips. This presents both benefits and costs. The

main advantage of our approach is that trips are exogenously chosen. Unlike Couture,

Duranton, and Turner (2018), who use travel survey data, we do not need to worry about

the simultaneous determination of variables like trip length and speed, which could affect

the estimates of city fixed effects in equation (2).12 Conceptually, our approach is similar to

measuring price indices from store price tags instead of from consumers’ transactions.

This exogeneity is also a potential limitation of our method. The trip instances that

we query do not correspond to actual trips and may not be representative of the travel

conditions faced by urban travelers. If our trips are far enough from representative, and if

the relative speed of various types of trips varies across cities, then our speed indices will

be mismeasured.

To this criticism, we have three answers. The first is that as noted in Section 2.2, some of

the trips we simulated were designed to resemble actual trips in other contexts where we do

have representative data such as Bogotá, Berlin, and the United States, with respect to either

their direction and length, or their destination type and frequency. We can also weight our

simulated trips to match the time pattern of our Intents sample of actual trips in Indian cities.

Second, we show below that the economic significance of the trip type indicators in equation

(2) is small when we introduce a comprehensive set of controls for other trip characteristics.

Third and most important, our large sample allows us to estimate speed indices for each

trip type, destination, time of day, distance to city center, and various other subsamples.

These indices are all highly correlated with our baseline index. As argued earlier, this result

implies that our indices do not depend in an important way on the particular utility weight

that each simulated trip could receive.

3.3 Disentangling two sources of mobility: uncongested speed and congestion.

Speed can naturally be decomposed into two components: an uncongested or “free flow”

speed, and a congestion factor. To separate the “intrinsic” slowness of a city from its

congestion, we can adapt the approach proposed above. To measure speed, we use the

12For instance, travelers may take longer trips when travel speed is faster. In addition, the (simulated) trip
instances that we query do not affect real traffic conditions.
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log of actual trip speed as dependent variable in equation (2) and estimate city fixed effects

ŝfec that we can interpret as an index of speed. To construct an index of uncongested speed,

we estimate the same equation with the log of speed in the absence of traffic returned by gm

(Snti = Di/Tnti ) as the dependent variable. The resulting city fixed effects n̂tfec are our index

of uncongested speed.

To measure congestion, we repeat the same estimation using the difference between log

trip duration with and without traffic, logTi − logTnti , as the dependent variable. While

strictly speaking, the resulting estimated city fixed effects, f̂fec , are a measure of delay, we

can interpret them as a broad index of congestion, which we call the congestion factor.

Because uncongested and congested speeds are defined using the same trip length,

logTi − logTnti = logSnti − logSi. The congestion factor is thus equal to the difference

between log speed without and with congestion. Since these three dependent variables are

linearly related, and the three regressions use the same sample and covariates, the three

fixed effects are also linearly related. A city’s congestion factor is the difference between its

uncongested speed index and its speed index:

f̂fec = n̂t
fe
c − ŝfec . (3)

This result is useful on two counts. First, it provides us with an exact city-level decompo-

sition of speed into uncongested speed and congestion, which we exploit below. Second,

when we regress these three city fixed effects on the same set of city determinants below,

the estimated coefficients conveniently add up.

3.4 Measuring travel time unreliability

Empirical studies in other contexts find that travelers care not only about travel speed, but

also about reliable trip duration (Brownstone and Small, 2005). For example, unexpected

late arrival at work has a cost distinct from that of a predictably long commute. Measuring

unreliability for a large sample of trips over many routes is challenging using traditional

methods (loop detectors, gps devices, or recall diaries). Our empirical design using gm is

uniquely well-suited for this exercise because we can query the same trip at the same time

(within a five-minute time window) on different weekdays.

As in Brownstone and Small (2005), we measure unreliability for a given trip departing at

a given time using the percentiles of the travel time distribution across different weekdays.

In particular, we compute the unreliability of a trip as the ratio of the 90
th to the 50

th
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percentile of its travel time distribution net of city-specific effects for each weekday, to

account for, say, systematically faster Thursdays in one city and Mondays in another.13 We

then compute unreliability indices for each city, using the unreliability ratio of each trip as

a dependent variable in the regression in equation (2) with all other controls except weather

(which is part of what we want to capture in measuring unreliability). The scope of our

unreliability analysis is broader than any previous attempts in the literature, and offers the

first cross-city evidence on travel time unreliability.

4 Trip-level results

Before an in-depth analysis of speed indices and their correlates, we first estimate a number

of variants of the generic regression described by equation (2).

We expect longer trips to be faster, as drivers use faster roads. We also anticipate slower

trips closer to the city center, both because of higher congestion, as expected in monocentric

cities, and likely also due to shorter blocks, more intersections, and narrower streets. Our

core set of controls thus includes log trip length and log average distance to the city center.

It also includes departure time (in 30 minute periods) and day indicators since travel speed

generally differs by time of day and day of the week. We expect variations in travel speed

throughout the day to be driven by differences in the demand for travel and perhaps by non-

travel uses of the roadway, such as parking or retail. We also introduce trip type indicators

to condition out any sampling differences. In addition, including weather conditions at the

time of the trip ensures that such idiosyncratic factors are not driving our results either.14

Our benchmark specification includes these core controls and city fixed effects. We call these

fixed effects “broad” because they absorb all other variation across cities.

In addition, we consider an extended set of controls which includes trip attributes related

to the specific route: gross gradients upward and downward, the length share along

motorways, primary, secondary, tertiary, residential and other roads, and the numbers of

intersections, turns against traffic, and establishments passed. With extended trip controls,

the resulting city fixed effects are “narrow” in the sense that they are net of the direct effect

13The standard deviation of arrival times is also a common measure of unreliability. Using a high percentile
of the trip time distribution has the advantage of capturing travelers’ special aversion to being very late
(Brownstone and Small, 2005).

14They also remove average cross-city variability in weather conditions from the city fixed effects, but we
show in the online Appendix that this makes little quantitative difference.
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Table 2: Determinants of log trip speed

(1) (2) (3) (4) (5) (6) (7)

log trip length 0.22a 0.22a 0.20a 0.19a 0.17a 0.24a 0.24a

(0.0046) (0.0045) (0.0042) (0.0042) (0.0037) (0.0047) (0.0042)
log distance to center 0.078a 0.082a 0.082a 0.056a 0.043a

(0.0047) (0.0049) (0.0050) (0.0049) (0.0044)
Gross gradient up -0.47a -0.31a -0.35a

(0.072) (0.070) (0.068)
Gross gradient down -0.11 -0.026 -0.12

(0.079) (0.081) (0.073)
Share primary roads -0.10a -0.086a -0.070a

(0.012) (0.011) (0.010)
Share secondary roads -0.13a -0.10a -0.097a

(0.013) (0.012) (0.011)
Share tertiary roads -0.17a -0.12a -0.13a

(0.012) (0.012) (0.011)
Share resid. roads -0.27a -0.18a -0.20a

(0.013) (0.012) (0.011)
Share other roads -0.21a -0.15a -0.19a

(0.013) (0.012) (0.011)
Share missing roads -0.13a -0.14a -0.15a

(0.012) (0.011) (0.010)
log # intersections -0.055a -0.0068

(0.0046) (0.0045)
arsinh # right turns -0.071a -0.070a

(0.0018) (0.0015)
arsinh # establishments -0.060a

(0.0029)
Type: circumferential 0.047a 0.051a -0.0050 -0.0021 0.011b 0.016a -0.0012

(0.0060) (0.0060) (0.0050) (0.0050) (0.0046) (0.0044) (0.0046)
Type: gravity 0.060a 0.064a 0.0059c 0.0078b 0.014a 0.016a 0.0054c

(0.0051) (0.0053) (0.0035) (0.0035) (0.0034) (0.0032) (0.0031)
Type: amenity 0.070a 0.072a 0.023a 0.022a 0.024a 0.020a 0.026a

(0.0053) (0.0054) (0.0037) (0.0037) (0.0035) (0.0032) (0.0032)
City effect Y Y Y Y Y Y Y
Day effect Y wkday wkday wkday wkday wkday wkday
Time effect Y Y Y Y Y Y Y
Weight N N N Intents Intents Intents Intents
Weather N N Y Y Y Y Y

Observations 57,103,181 41,991,655 - - - 41,249,209 -
R2 0.55 0.55 0.57 0.57 0.60 0.64 0.67

Notes: 180 cities in each column. OLS regressions with city, day, and time of day (for each 30 minute
period) indicators. Log speed is the dependent variable in all columns. Robust standard errors in
parentheses. a, b, c: significant at 1%, 5%, 10%. Sample sizes for columns 2 and 6 apply to columns
2–5 and 6–7, respectively. Share of road classes are measured as a function of trip length. Motorways
are the reference category. The reference category for trip type is radial trips. Weather indicators for
rain (yes, no, missing), thunderstorms (yes, no, missing), wind speed (16 indicator variables),
humidity (15 indicator variables), and temperature (5 indicator variables).
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of route characteristics on each trip and only include the indirect effects of city attributes

(such as roads). While these effects are informative, we prefer the “broad” fixed effects as

our benchmark because of our focus on cross-city differences: they allow us to estimate

overall effects of city characteristics on speed.

A first series of results is reported in table 2. Column 1 regresses log trip speed on

city fixed effects and most core controls: day, time, trip type and length. Column 2 repeat

the specifications of columns 1 on a sample of only weekday trips. Column 3 introduces

log distance to city center and weather indicators. Column 4 includes regression weights

ensuring that the total weight of all trips taken during any half hour of day is proportional

to the share of trips taken during that half hour in the Intents data on actual trips. Column

5 adds controls for upward and downward gradients, and for the share of each osm road

class along a trip’s route. Columns 6 and 7 add controls for the number of intersections,

the number of turns against traffic, and the number of Google Places establishments along

a trip’s route.

We find that longer trips are faster: the elasticity of trip speed with respect to trip length

is 0.22 in columns 1 and 2. This is a prominent feature of urban transportation data in other

contexts.15 Regressing log trip speed on log trip length without any further control yields

an R2 of 0.31. Unsurprisingly, trips further from the center are also faster. In columns 3 and

4, the elasticity of trip speed with respect to distance to the center is 0.08, implying that a

trip at 10 kilometers from the center of a city is nearly 20% faster than a trip one kilometer

from the center.

In column 1 and 2, we find fairly large differences of up to 7% in speed between different

types of trips. These differences become much smaller once we add a control for distance

to city center in column 3 to 7. This result is reassuring, and suggests that the design of our

hypothetical trips is not driving our results. We also find minimal differences between days

of the week, except that Sundays are about 4.5% faster.

In column 3, we introduce weather controls and find modestly lower speed during

adverse weather conditions. Comparing columns 3 and 4 shows that results are similar

15Couture et al. (2018) estimate a larger elasticity close to 0.40 using self-reported us data where the measure
of trip duration also includes a fixed time cost of getting into one’s vehicle and entering traffic. Using self-
reported data, Akbar and Duranton (2018) find an even larger elasticity for Bogotá travelers, because their
sample also includes transit trips, with even larger fixed time costs. Using analogous gm data for the same
Bogotá trips, Akbar and Duranton (2018) find an elasticity of 0.21, very close to the elasticity estimated here.
We experimented with adding the square of log trip length, and estimate very small coefficients for these
higher order terms that are generally not significant.
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after re-weighting trips to ensure that the total weight of trips within each half hour of the

day matches the departure shares from actual trips in Indian cities (Intents data).

Column 5 shows that driving uphill is slower, but not driving downhill. The coefficients

on each road class are consistent with osm road classification. That is, trips on primary

roads are 10 percent slower than trips on motorways (the excluded road class), trips on

secondary roads are even slower, and so on. Column 6 shows that trips on routes with more

intersections and turns against traffic are slower, but the effect of intersections disappears

in column 7 after controlling for the number of establishments near the trip route, which is

negative and highly significant.

Our results do not depend on the specific choices we made when choosing our benchmark

specification. Online Appendix table G.1 reports several variants of Table 2, column 4,

including subsamples for peak hours, high peak hours, commutes (radial inward in the

morning and outward in the evening), night only and day only.16 Key elasticities change

little, and as we show below, city effects do not either.

As expected, we also observe fluctuations in travel speed across times of day. In figure 3,

which mirrors figure 2 but isolates hour effects, the dark line with small triangles plots the

speed relative to 1:30 - 2 am for each thirty-minute period estimated in column 4 of table 2

for all cities. The gap between the fastest time in the middle of the night and the slowest at

6:30 pm - 7 pm is slightly more than 25%. We also note that morning peak hours are more

muted than the evening peak hours.17

The figure also plots the same time profile estimated only on the decile of largest cities.

The patterns are much more marked. The slowest periods in the evening are now more

than 35% slower than the fastest. This pattern is slightly more accentuated when restricting

to Mumbai, the second most congested city in our sample, and considerably more so in

Central Mumbai, where peak travel is about half as fast as travel in the middle of the night.

By contrast, travel speed in Santipur, though very slow in general (see above), varies little

throughout the day.

16We define as peak all the 30-minute periods where traffic, as measured from our preferred trip regression,
is at least 20% slower than uncongested speed: 10 am to 2 pm and 4:30 to 9 pm. High peak is when traffic is
at least 25% slower than uncongested speed, from 6 to 8 pm. For ‘commutes’, we consider inward radial trip
during the morning peak and outward radial trips during the evening peak.

17Since India is a vast country with a single time-zone, within-day fluctuations may be attenuated by the
timing of sunrise and sunset, which differs across sampled cities by up to about two hours. A variant of figure
3 using the time of each trip relative to local sunrise and sunset is virtually indistinguishable from figure 3.
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Figure 3: Estimated time effects for weekday travel
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Time effects (in percentages, relative to 3 - 3:30 am) as estimated in Table 2, column 4. All the coefficients from
6 am to midnight (excluding Santipur) are significant at 1%.

We finally turn to city effects. As argued above, we can interpret them as speed index

values. They measure (log) trip speed in cities after conditioning out log trip length, log

trip distance to the center, day and time of day effects, and effects of weather. The standard

deviation of the speed index is 0.116. The slowest city is 29% slower than the mean while

the fastest city is 30% faster. This 83% speed difference between the slowest and fastest city

is extremely large. We compare our results for India to analogous results for the us below.

Table 3 reports the ten slowest, most congested, and fastest cities. The ten slowest include

three of the four largest cities in India, as well as three in Bihar, the poorest state. The

ten most congested include seven of the ten largest cities. To interpret the magnitudes for

congestion, it is important to keep in mind that the congestion factor of a city is relative. It is

estimated conditionally on time effects (and other controls in the regression) and it reflects

a log deviation from uncongested speed. So with a congestion factor of 0.10, Kolkata is

about 10% slower, relative to its uncongested speed, than the average across all trips in all

cities. As made clear by the speed fluctuations throughout the day reported in figure 3, the
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Table 3: Ranking of the 10 slowest, most congested, and fastest cities

Slowest speed index Highest congestion factor Fastest speed index

Rank City State Index City State Index City State Index

1 Bhiwandi Maharashtra -0.34 Bangalore Karnataka 0.18 Ranipet Tamil Nadu 0.26
2 Kolkata West Bengal -0.31 Mumbai Maharashtra 0.16 Cherthala Kerala 0.21
3 Santipur West Bengal -0.28 Delhi Delhi 0.15 Malappuram Kerala 0.20
4 Arrah Bihar -0.28 Chennai Tamil Nadu 0.13 Karur Tamil Nadu 0.20
5 Bihar Sharif Bihar -0.27 Guwahati Assam 0.12 Karnal Haryana 0.19
6 Mumbai Maharashtra -0.26 Bhiwandi Maharashtra 0.11 Kayamkulam Kerala 0.19
7 Bangalore Karnataka -0.24 Pune Maharashtra 0.11 Palakkad Kerala 0.18
8 Patna Bihar -0.24 Hyderabad Telangana 0.11 Kanhangad Kerala 0.18
9 Shillong Meghalaya -0.24 Kolkata West Bengal 0.10 Bhilwara Rajasthan 0.17
10 English Bazar West Bengal -0.24 Shillong Meghalaya 0.09 Shimoga Karnataka 0.17

Notes: The speed index is measured by the city effect estimated in column 4 of table 2 and is centered
around its mean. The congestion factor is measured from a similar regression using log trip duration
minus log trip duration in absence of traffic as dependent variable, and centered around its mean.

mean trip across cities experiences some congestion. Hence, the congestion factor of a city

captures congestion over and above average congestion. This index is negative for cities like

Santipur, which experience less congestion than the average. Finally, the ten fastest cities are

all relatively small, and disproportionately in the southern states of Kerala and Tamil Nadu.

In online Appendix G (table G.2), we investigate the robustness of our speed index to

a wide variety of specification and sample choices. Our speed index is not sensitive to

restricting our sample to specific areas of the city, or specific times of the day, or specific

types of trips. Our speed index also is highly correlated with more sophisticated indices

that resemble standard price indices (e.g. Laspeyres), and with indices derived from discrete

choice models that allow for rich substitution patterns across trips. We conclude that our

speed index provides a robust characterization of travel cost differences across cities, because

slow cities tend to be slow at all times, for all types of trip destinations, and across the city.18

To complete our description of trip-level results, we document significant unreliability

in travel time across urban India. Across different weekdays during peak times, trip times

at the 90
th percentile are on average 6% slower than median trip times. In more than 80%

of cities in our sample, average unreliability is between 4% and 8%. Trip time is more

18We emphasize that appropriately estimating a city speed index requires accounting for trip-length differ-
ences. For instance, a mean speed index computed from equation (1) has a fairly low rank correlation of 0.68

with our benchmark speed index. As noted in Couture et al. (2018) for us metropolitan areas, means of speed
do not provide good descriptions of speed in cities, because trip length has a large explanatory power on
trip speed, and average trip length varies systematically across cities. This highlights the importance of using
entire trip instances as units of analysis, instead of trip segments or travel speed at discrete locations.
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unreliable in larger cities, with an average unreliability of 8% for cities in the top population

decile. The most congested cities are also the most unreliable, with a correlation between

our congestion and unreliability indices of 0.81.

To put these numbers in perspective, Brownstone and Small (2005) conclude that Cali-

fornian morning commuters value the 90
th to 50

th percentile difference in travel time 95%

to 140% as highly as they value median travel time. In our data, the population-weighted

average peak travel delay is about 21%, and the population-weighted average unreliability

is 7%.19 This suggests that the cost of unreliability is about a third of that of travel delay.

5 Decomposition: uncongested speed and congestion

In this section, we decompose our indices of speed into speed in the absence of traffic

(uncongested speed) and the congestion factor following equation (3). This relationship

allows us to perform two useful exercises: an exact decomposition of the variance in our

speed index, and a simple analysis to compare the welfare gains from faster uncongested

speed with those from reduced congestion.

5.1 Variance decomposition

The variance of the speed index is equal to the sum of three terms: the variance of

the uncongested speed index, the variance of the congestion factor, and minus twice the

covariance between the uncongested speed index and the congestion factor. As shown in

the first row of Table 4, the variance of the uncongested speed index accounts for 70% of the

variance of our benchmark speed index while that of the congestion factor accounts for only

13%. This is a striking finding. Differences in speed between Indian cities are mostly driven

by differences in their uncongested speed, not by differences in how congested they are. It

is consistent with the findings of table 3, which show much more variance across cities in

overall speed than in congestion.

A possible caveat here is that, despite a weighting scheme that relies on actual trips,

our data oversample trips at night and this may bias our speed index towards uncongested

19This is perhaps an underestimate as our data from gm assume optimal re-routing depending on traffic
conditions. Travelers without the benefit of information on current traffic or unwilling to re-route may face
even more unreliable travel times, as well as longer delays. gm may also overestimate unreliability if it captures
variation that is known in advance to commuters.
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Table 4: Variance decompositions of our baseline speed index

Sample Cities All trips High peak trips

Uncongested Congestion Covariance Uncongested Congestion Covariance
speed factor speed factor

All 180 0.701 0.126 -0.086 0.567 0.259 -0.087
Smallest 50% 90 0.813 0.062 -0.063 0.842 0.115 -0.022
Largest 50% 90 0.632 0.179 -0.095 0.464 0.324 -0.106
Largest 25% 45 0.528 0.224 -0.124 0.390 0.349 -0.130
Largest 10% 18 0.477 0.238 -0.143 0.370 0.340 -0.145
Note: Full trip sample. High peak hours are 6–8 PM

speed. Performing the same exercise with indices computed only from trips taken at high

peak hours between 6 and 8 pm, we find that the uncongested speed index still represents

57% of the variance of the speed index whereas the congestion factor represents only 26%.

The second row shows that congestion explains very little speed variation across smaller

cities, even at peak times. This is unsurprising. Smaller cities are mostly uncongested but

experience large differences in uncongested speed. By contrast, the largest cities face more

similar uncongested speed but are congested to different degrees.

In rows 3–5, we restrict the sample to the largest 50%, 25%, and 10% of cities. The two sets

of differentials (overall and high peak) shrink further. However, in all cases the contribution

of uncongested speed remains larger than that of congestion, even at high peak hours in the

top decile of cities (although the difference is now small).

In online Appendix table H.1, we show that the role of congestion expands as we limit

attention to city centers, especially at high peak hours and in larger cities. Variance in un-

congested speed still however represents a substantial share of overall variance across cities

in all samples. We also repeat the same decomposition for each type of trip separately and

find roughly similar results for the respective roles of uncongested speed and congestion.

5.2 Valuing improvements in uncongested speed and congestion.

The valuation of an improvement in uncongested speed depends on how much of that

improvement is crowded out by peak time congestion. Our cross-city data does not offer

opportunities to causally identify the extent of crowding out from congestion. However, we

note that if crowding out was extensive, then cities with faster uncongested speed would also

experience more congestion. We find instead a small negative (-0.29) correlation between our
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uncongested speed and congestion indices.20 Also consistent with the idea that uncongested

speed improvements are not crowded out by rising congestion, our cross-city regressions

below show that characteristics of road networks (mileage of major roads, street lighting,

and grid-like structure) are all positively associated with higher uncongested speed but not

with congestion. This lack of evidence for strong network congestibility is also consistent

with existing findings in developing cities from Akbar and Duranton (2018) in Bogotá and

Kreindler (2018) in Bangalore.21

If we assume that any changes in congestion are small, then improvements in uncon-

gested speed translate almost one-to-one into time saving gains, even at peak times. So,

a one standard deviation improvement in uncongested speed, equivalent to uncongested

speeds that are 10 percent faster, translates into time savings of 10 percent.22 In contrast,

gains from congestion pricing in Akbar and Duranton (2018) and Kreindler (2018) are

smaller than one percent of travel costs.23 On the benefit side of any cost-benefit analysis,

these estimates suggest that gains from achieving a one standard deviation improvement

in uncongested speed could be many times larger than the gains from introducing optimal

congestion pricing.

Finally, we note that the monetary value of time savings from a standard deviation (10

percent) improvement in uncongested speed would be larger in cities where workers have

higher value of travel time, higher motor vehicle commute share, and longer commute

length. In online Appendix J, we express these gains in monetary units, and explore

cross-city heterogeneity. We find a population-weighted average yearly gains per worker

of 1,157 inr (about 16 usd) for vehicle commuters in the 100 cities with the largest Census

sample of workers.24 The largest yearly gains per worker are 2,696 inr (about 38 usd) in

20Another way to see this is from a bivariate cross-city regression: a 1% increase in uncongested speed is
associated with a 1.12% increase in actual speed, with a standard error of 0.03% and an R2 of 0.88.

21In characterizing how road networks are less congestible than previously thought, Kreindler (2018) high-
lights the linear relationship between travel speed and the number of vehicles on the road, while Akbar and
Duranton (2018) highlight the role of side roads in relieving congestion on major roads at peak time.

22We ignore additional welfare gains from induced demand.
23The gains from congestion pricing would likely be higher near the center of large cities. For instance, Yang

et al. (2020) estimate that optimal congestion pricing in Beijing would increase traffic speed by 4 percent in the
city overall, and by 11 percent within the city center (within the third ring road).

24They save 5.5 minutes in travel time per work day from the speed increase, valued at vehicle commuters’
average wage. In the us, Small and Verhoef’s (2007) review of the literature suggests valuing travel time at
50% percent of the hourly wage, while Goldszmidt et al. (2020) find 75% and document significant cross city
heterogeneity. Kreindler (2018) estimates 400% using experimental data from Bangalore. We pick a value
of 100 percent to remain conservative while accounting for the possibility of higher valuation in developing
countries due to road or vehicle quality or other costs like fuel that are relatively more important there.
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Delhi, a city with high wages and a high share of vehicle commuters.

6 Correlation of speed indices with city characteristics and urban devel-

opment

We now explain speed using city characteristics. We first consider basic demographic and

geographic characteristics. Population and area are likely to be of central importance, as

previous work has found that denser and more compact cities are slower in the us (Glaeser

and Kahn, 2004, Couture et al., 2018). Uneven terrain requires steep and/or circuitous roads

that decrease driving speed and can also create bottlenecks. Similarly, water bodies limit

road construction and can force traffic onto a limited set of causeways or bridges. To the

extent that many cities form around harbors and rivers, these bottlenecks often occur in

historical centers with high density.

We next consider road infrastructure. Major roads, street lighting, and a regular grid all

have the potential to facilitate faster driving. Major roads are typically wider, better paved,

and in some cases restricted access. All this facilitates faster driving in the absence of traffic.

Street lighting also makes it possible to drive faster early or late in the day. It may also proxy

more broadly for higher quality roads. The shape of the street network is also often alleged

to play an important role in helping vehicles flow. Angel (2008) and Fuller and Romer (2014)

highlight grids in particular.

Finally, we consider correlates of urban economic development, chiefly wage levels.

Richer cities may be able to facilitate driving in more subtle ways than the infrastructure

measures above, including perhaps fewer non-traveling users of the roadway and better

adherence to traffic rules in addition to better design, construction, and maintenance. Richer

cities may also face more vehicles and faster population growth adding to congestion.

Table 5 reports results for our benchmark speed index in columns 1–3. Columns 4–6

and 7–9 report the same specifications predicting the benchmark uncongested speed and

congestion indices, respectively. Because the speed index is equal to the uncongested speed

index minus the congestion factor and we estimate the same specifications for all three

dependent variables in each column, each coefficient in column 1–3 is equal to the analogous

coefficient in column 4–6 minus the analogous coefficient in column 7–9.

Column 1 of table 5 considers basic demographic and geographic characteristics. Because

our dependent variable is a measure of log speed, we can interpret the population and area
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coefficients as elasticities. For city population, we estimate an elasticity of -0.15. For city

area, the elasticity is of opposite sign and equal to 0.17. These two variables explain 36% of

the variation in speed across Indian cities. Further controls added in subsequent columns

have little impact on these results.

These results suggest a large density effect since an increase in population keeping

land area constant is an increase in population density. An elasticity of the cost of travel

with respect to population density of -0.15 to -0.19, as implied by the results of table 5, is

comparable in magnitude to the analogous elasticity of housing price at the center of French

cities of 0.21 estimated by Combes, Duranton, and Gobillon (2019). To the extent that we

can compare India with France, these results are suggestive that much of the urban costs

measured by Combes et al. (2019) reflect slower travel in denser cities.

At the same time, the mostly offsetting nature of the coefficients on population and urban

land area in column 1 implies that, unlike density effects, population effects are small when

we allow land area to adjust. Consistent with this, we estimate an elasticity of about -0.04

when regressing our preferred speed index on log city population alone (not shown).

In columns 4–9, we see that consistent with our earlier decompositions of overall variance,

most of the effect of city population and city area on speed works through uncongested

speed. At least in part, we attribute this large effect of population density to shorter blocks,

narrower roads, and perhaps a greater prevalence of light signals in denser areas. Consistent

with this interpretation, in a regression not reported here we find that when we measure

uncongested speed with “narrow” city fixed effects (i.e. from a trip-level regression that

conditions out gross gradients, intersections, establishments passed, turns against traffic

and road shares), the magnitude of the coefficient on city population in the column 6

specification falls by nearly a third to -0.11, fairly close to the analogous us coefficient of

-0.08. For the congestion factor, we find an elasticity of city density of 0.037 in column 7 that

varies little across specifications.

Consistent with expectations, hills and water bodies reduce speed, primarily through

uncongested speed, but they noticeably increase congestion as well.

The density of major roads has a robust positive impact on speed, mostly through

uncongested speed, while their effect on the congestion factor is a precisely estimated zero.

We think these findings reflect two facts. First, major roads are engineered to be faster than

other roads in the absence of traffic. Second, the absence of an effect on the congestion

factor is consistent with the fundamental law of ‘major roads’ congestion: more major roads
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attract new traffic and eventually leave congestion unchanged (Duranton and Turner, 2011).

Street lights and a road network that conforms more to a grid also increase speed via

uncongested speed. Together, these three infrastructure measures notably increase the share

of explained variance in speed from 0.47 to 0.62.

Column 3 of table 5 further includes average earnings per industrial worker, in usd per

day, and its square. We find evidence of a hill shape: speed first increases with income

and then declines. The elasticity of speed with respect to city income is 0.046 at the bottom

decile of city income and -0.030 at the top decile, while the turning point corresponds to

a city close to the eighth decile of income. Examining the separate effects of income on

uncongested speed and the congestion factor in columns 6 and 9, we find that the shape of

the income-speed relationship reflects two opposing forces. Uncongested speed improves

with income throughout essentially the whole distribution, perhaps because of better roads.

The congestion factor also increases with income in the top half of the income distribution,

consistent with our findings below on car ownership, which also rises with income.

To assess the importance of the various explanatory variables we consider in table 5,

we measure how the R2 changes when we remove an explanatory variable or a block of

explanatory variables from the full specification for the speed index in column 3, for which

the R2 is 0.64. Starting from this full specification minimizes the role of omitted variables,

relative to interpreting marginal contributions of added variables to R2, and is in that sense

consistent with the decomposition framework of Gelbach (2016). Removing population

lowers the R2 of this regression to 0.23. Removing the geography variables (area, variance of

elevation and length of rivers and coasts) has a smaller effect: the R2 falls to 0.51. We obtain

a similar result when we remove the three roads variables (with the length of the roadway

having the strongest effect). Finally, removing the income variables has only a marginal

effect on the R2 as it falls to 0.62.25

It is also interesting to conduct the same exercise for uncongested speed and congestion

because both are affected by the same factors as speed. For uncongested speed, the R2 of

the full specification in column 6 of table 5 is is 0.60. It falls to 0.21 without population,

0.42 without the roads variables, 0.50 without geography, and 0.59 without income. For

congestion, the R2 of the full specification in column 9 of table 5 is 0.51. It falls to 0.39

25Online Appendix table I.2 provides consistent evidence on the importance of variables based on the
coefficients on standardized versions of our explanatory variables.
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Table 5: Correlates of city indices

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Dependent variable Speed index Uncongested speed Congestion factor

log population -0.15a -0.19a -0.18a -0.12a -0.16a -0.15a 0.037a 0.038a 0.035a

(0.016) (0.015) (0.016) (0.014) (0.013) (0.013) (0.0066) (0.0068) (0.0071)
log area 0.17a 0.10a 0.096a 0.14a 0.074a 0.070a -0.025a -0.030a -0.026a

(0.017) (0.019) (0.019) (0.016) (0.019) (0.019) (0.0067) (0.0079) (0.0079)
Elevation variance -0.033a -0.034a -0.036a -0.022a -0.024a -0.027a 0.011a 0.0097a 0.0089a

(0.0043) (0.0045) (0.0047) (0.0038) (0.0029) (0.0030) (0.0035) (0.0033) (0.0033)
Water length -0.22a -0.14a -0.14a -0.16a -0.079b -0.082b 0.059b 0.058b 0.053b

(0.046) (0.041) (0.040) (0.047) (0.039) (0.035) (0.024) (0.023) (0.022)
log major roads 0.069a 0.069a 0.077a 0.073a 0.0074 0.0038

(0.016) (0.016) (0.016) (0.017) (0.0056) (0.0051)
log street lights 0.014a 0.010b 0.010b 0.0088c -0.0041 -0.0015

(0.0051) (0.0051) (0.0042) (0.0048) (0.0025) (0.0018)
Network 0.29a 0.29a 0.24a 0.25a -0.054 -0.041

(0.091) (0.087) (0.084) (0.081) (0.037) (0.035)
Earnings 0.028a 0.016b -0.013a

(0.0088) (0.0079) (0.0039)
Earnings2 -0.0021a -0.00086c 0.0013a

(0.00053) (0.00048) (0.00023)
R2 0.47 0.62 0.64 0.38 0.59 0.60 0.41 0.44 0.51

Notes: 180 observations in each column. OLS regressions with a constant in all columns. The
dependent variable of columns 1, 2, and 3 is the city fixed effect estimated in the specification
reported in column 4 of table 2. The dependent variable of columns 4, 5, and 6 is the city fixed effect
of an analogous regression using uncongested speed as dependent variable. The dependent variable
of columns 7, 8, and 9 is the city fixed effect of an analogous regression using the congestion factor as
dependent variable. Robust standard errors in parentheses. a, b, c: significant at 1%, 5%, 10%. Log
population is constructed as described in the main text from the 2011 census. Elevation variance is
the variance of the elevation of the nodes of the road network (where elevations are measured in
meters and the variance is divided by 1000). Water length is the length of all coast and rivers
measured in thousands of kilometers. Log major roads is log kilometers of motorways, primary,
secondary, and tertiary roads within the city. Log street lights is the log of the number of kilometers
of roadway with lights from the 2011 census. The network shape variable used in column 4 measures
the share of edges in the road network that conform to the grid’s main orientation, i.e. whose
compass bearing are within 2 degrees of the modulo 90 modal bearing in the network. It measures
how grid-like the city is. Income is measured with industrial earnings from the 2011 census and
measured in USD per day. An F-test rejects the joint insignificance of both earnings variables at 1% in
columns 3 and 9. The same tests marginally fails to reject it at 10% in column 6.

without population, 0.43 without topography, 0.44 without income, and 0.50 without the

roads variables.

Hence, city population is the key determinant of both speed and uncongested speed

ahead of roads and topography while income only plays a modest role. For congestion,
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population is less fundamental but still the most important determinant ahead of topogra-

phy and income, while roads play essentially no role. The similarity of the results between

speed and uncongested speed is consistent with our decomposition above, which shows

that most of the variation in speed is accounted for by uncongested speed.

Online Appendix table I.1 considers three additional regressors. First, population growth

in the previous three decades is significantly associated with more congestion, but also

with faster uncongested travel. Overall the positive effect via uncongested speed appears

to dominate, though not significantly so. While we leave a deeper investigation of these

results for future research, we emphasize that they are inconsistent with typical claims that

rapid urban population growth in developing countries is necessarily associated with worse

mobility. Congestion may worsen with population growth but this negative effect is more

than offset by faster roads. Second, having more cars is significantly associated with more

congestion, but also with faster uncongested speed (albeit not significantly), so the overall

effect on speed is small and not significant. Motorcycles, which take up less space and can

weave through traffic, are associated with less congestion and faster travel. Again, causal

identification is beyond our scope here, but these results are consistent with motorcycles

taking up less room than cars, but inconsistent with them being a response to congestion.

Third, a greater concentration of city population, as measured by a spatial Gini coefficient,

is associated with slower uncongested speed but also less congestion. This is an intriguing

result which suggests that the distribution of population within cities matters in determining

their mobility as often claimed by urban planners (e.g. Ewing and Cervero, 2010). We again

leave a deeper investigation of this issue to future research.

Online Appendix tables I.2 and I.3 provide further robustness checks. In particular, online

Appendix table I.2 shows that our results are robust to alternative measures of population,

roads, road network, and income. We also fail to provide evidence regarding two measures

of road quality, potholes per kilometer and mileage of paved roads, perhaps because of

substantial data limitations. Online Appendix table I.3 shows that our key results are not

sensitive to the choice of our benchmark speed index as dependent variable. Interestingly,

we estimate very similar results for a daytime and a nighttime speed index. We also find

that using the ‘narrow’ city fixed effects, which we estimate controlling for extensive trip

characteristics, has only minimal effects on our key results. In particular, we find that

the length and shape of the city road network still matter even after conditioning out many

attributes of the route taken by each trip. In other words, road networks may have important
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external effects on a given trip.

Although our findings above are generally stable across a wide variety of specifications,

they may be subject to bias due to omitted city-level variables. In results reported in online

Appendix K, we control for city fixed effects, using within-city variation in population, area,

and roads, at the level of concentric rings (0 to 3 kilometers from the center, 3 to 5, 5 to 10, 10

to 15, and 15 and beyond) to gain further insights. Within cities, rings with more population

and and less area within city boundaries are slower, just as in the across-city results above.

7 Extensions: walking, transit, and comparison with the US

7.1 Walking and transit

While roughly half the households in the average city in our data have a private vehicle—

sometimes a car but more often a motorcycle—we recognize that city dwellers in India also

often walk and use transit. To investigate these two alternative modes of travel, we collected

walking and transit travel time data, described in Online Appendix A, for all our trips.26

Walking speeds vary little across trips. Mean walking speed is 4.8 kilometers/hour with

a standard deviation of 0.1 kilometers/hour. We first estimate the determinants of walking

speed in the same manner as table 2. Walking is modestly faster on residential and other

small roads and downhill. The standard deviation of city effects is unsurprisingly small

at 0.02 and even 0.002 after excluding one mountainous city (Aizawl). An assessment of

city-level determinants analogous to table 5 confirms the importance of changes in elevation:

they account for 83% of the cross-city variation in walking speed.

Turning to transit, the data have two important limitations. gm only appears to return

transit information for formal transit, and only based on official timetables. This ignores

informal transit and delayed or canceled service in formal transit. With these caveats in

mind, we first note that only about 18% of our trip instances have a transit alternative that

we define as ‘viable’: it requires less than an hour wait, and is strictly faster than walking.

Despite this selection, viable transit trips take on average 2.9 times as long as driving trips

when considering total trip time, which includes walking to and from the stop/station and

waiting for the bus/train, in addition to the time in transit, and still 2.5 times as long when

considering only time in transit.

26We abstract from other costs including transit fares and safety concerns associated with public transit,
especially for women, e.g. Borker (2020).
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For 146 cities, we can estimate indices analogous to our baseline mobility index for transit.

The results, analogous to table 2 columns 4 and 7, are reported in online appendix table L.1.

We find that longer trips are faster and that trips expected to use higher road classes are

faster. However, unlike private vehicle speed, transit speed does vary by trip type. Radial

trips are sizeably faster whereas circumferential trips are slower. This arguably reflects the

monocentric structure of many transit networks.

We also note that, unlike with walking, cross-city variation in transit speed is large. The

standard deviation of our transit mobility index is about twice that of our baseline mobility

index for private vehicles. This variation does not seem to be due to sampling variation

as these indices are precisely estimated. The rank correlation between our mobility index

for transit and our baseline mobility index (for private vehicles) is low at 0.19. Although

we must remain cautious given the limitations of our transit data, this suggests that transit

speed depends much more on the coverage and frequency of transit than on driving speed.27

7.2 Comparison with the US

In the Introduction, we showed that motorized travel in two large Indian cities is slow

compared to their us counterparts. Here we provide more comprehensive comparisons

between Indian and us cities. Appendix M provides more details. In particular, Online

Appendix tables M.1–M.4 report us analogs to Tables 1, 2, 4 and 5.

Sampled trips in American cities are 70% faster on average than those in Indian cities.

Trip level regressions in both countries show that trip length and city and time of day effects

explain the majority of variation across trips, though even more so in the us. The log trip

length coefficient is 25–50% larger in the us, highlighting the greater availability and speed

advantage of highways and other fast road classes. Other trip speed determinants work in

the same direction in both countries, and similarly have relatively small explanatory power.

Perhaps unsurprisingly, there is greater speed heterogeneity across cities in India: the

speed difference between top and bottom deciles is 25% in the us and 36% in India. A

variance decomposition shows that our key finding on the importance of uncongested speed

also holds in the us: speed differences across us cities are also driven more by uncongested

27Even though we rely on timetables, the fact that transit speed decreases less than driving speed at peak
hours is suggestive here, as long as published schedules take average traffic into account at all. Also, most of
the variation in transit indices is unexplained; unlike driving, transit indices show few robust associations with
city characteristics. Interestingly, we find a negative association between transit speed and city population
when transit speed is computed using time in transit but not when using total trip time. Again this is
suggestive of our main conclusion about transit and the importance of system coverage and frequency.
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speed than by congestion. However, the covariance term plays a much bigger role than in

India. The correlation between the congestion factor and uncongested speed is -0.29 in India

and a staggering -0.82 in the us. In other words, congested cities in the us are also slower in

the absence of traffic, presumably due to shorter blocks, red lights, and other ‘permanent’

features.

Finally, city-level correlates of speed are broadly similar between the two countries, but

three key interesting differences. First, the us population-speed elasticity is nearly a third

lower, but it has even more explanatory power despite less variation to be explained. Second,

physical geography explains less variation in the us. Third, roads and road networks show

weaker effects in the us. These differences are all consistent with significantly more roadway

in us cities attenuating the effects of greater population, offsetting the effects of a difficult

geography, and perhaps running into diminishing marginal benefits for travel speed.

8 Conclusions and policy implications

We propose a novel approach to comparing vehicular speed across cities, and decomposing

it into uncongested speed and a congestion factor. We apply it using novel large scale data

on simulated trips in 180 Indian cities collected from gm. We document large mobility

differences across cities, and find that slow speed is primarily due to cities being slow all

the time rather than congested at peak hours. We do nonetheless find an important role for

congestion in the largest cities, especially close to their centers.

Several city attributes are consistently correlated with speed and its components. We

find that population and land area are key correlates of city speed. Higher population

density is strongly associated with slower uncongested speed as well as more congestion.

Physical geography features including waterbodies and varying elevation are associated

with slower uncongested travel and more congestion, while more roads and streetlights

and a more gridded street network are associated with faster uncongested travel, but not

with congestion. Higher income cities have higher uncongested speed, but also higher

congestion, leading to a hill-shaped relationship between income and overall speed.

Overall, these indicators of urban infrastructure and economic development are associ-

ated with faster speed despite worse congestion, contrary to a conventional wisdom that

urban growth and development condemns developing cities to complete gridlock. While

in principle variation in uncongested speed could reflect many city attributes beyond those
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we consider here in our regressions, such as vehicle stock or driving culture, we interpret

it as being primarily due to the quality of the road network. Most old cars can be driven

45 kilometers per hour (the 99th percentile of our trip speed distribution), and we speculate

that gm’s algorithm is likely to pick out a high percentile of the block speed distribution it

observes in order to distinguish motorized from non-motorized vehicles.

We hope that this first set of cross-city evidence on urban travel speed and congestion in a

developing country can help guide policy and future research, in three key directions. First

they suggest that attention to congestion can be focused on the centers of India’s largest

cities. Second, the comparison with American cities imply that country-specific policies

are necessary, and that using our data sources and methodology to study other countries

individually may uncover distinctive patterns. Third, in most Indian cities travel is slow at all

times, not just peak times, and a simple welfare analysis suggests that modest improvements

in uncongested speed would generate substantial gains relative to even optimal congestion

pricing. Thus, consistent with work by Akbar and Duranton (2018) and Kreindler (2018)

on individual cities, standard policy recommendations like congestion pricing, hov lanes,

or other types of travel restrictions may do little to improve mobility. We would therefore

like to encourage researchers to also study policies and investments that generate faster

uncongested speed. Our paper provides a first set of results suggesting a modest positive

role for the design of a regular network grid and the presence of more major roads, but

much work remains to be done in terms of identifying cost-effective ways to build faster

urban networks.

The data and methods we have developed can teach us much more. Speed is only one

component of accessibility, the other being proximity to destinations. In ongoing work, we

are developing complementary measures of accessibility in Indian cities. They may also

help us understand how transportation affects urban land use patterns and property prices.

Relative to more traditional travel surveys, the information used here is less complete but

can be gathered at a small fraction of the cost and much higher frequency than the typical 5

to 8 year gap between consecutive traditional travel surveys, and allows for the evaluation

of policy changes in the short-run (Kreindler, 2016, Hanna et al., 2017). We believe future

studies of this type will shed useful light on many aspects of transportation policy in cities,

as well as recovery from shocks such as natural disasters.
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Appendix A. Main data sources

A. City Definitions

Our city universe and definitions come from two sources. City point locations and pop-

ulations are from the World Urbanization Prospects, 2018 revision (wup; United Nations

(2019)), which contains all 181 cities in India and 139 in the us with a (projected) population

of at least 300,000 in 2018. City boundaries are based on two datasets from the Global Hu-

man Settlements Layer (ghsl) version 2016A reporting conditions circa 2014-15: Settlement

Model (smod; Pesaresi and Freire, 2016), which defines each 1-kilometer grid cell as urban or

not, and the 38-meter Built-up grid (built; Corbane et al., 2018). We combine these datasets

in several steps for both India and the us:

1. We split “twin” cities that wup treats as one, but we believe are better conceptualized as

two for our purposes (San Francisco-Oakland, Dallas-Fort Worth, and St. Petersburg-

Tampa, us). We allocate the total population of the pair to each member based on

alternative population sources.

2. We alter the location of some cities as follows. We first compare each city’s coordinates

to those reported for the same city (based on a search for name and country) by Google

Maps (gm). For any city where the discrepancy is greater than 5 kilometers, we manu-

ally search to determine which is more appropriate. For two Indian cities we chose gm:

Hubli-Dharwad and Kakinada. If neither is appropriate, for example because the gm

search returns a smaller place of the same name, we pick another central point in gm:

Darbhanga (train station), Korba (central intersection) and Tirunelveli (central temple).

We further use gm for all us cities.

3. We assign the nearest set of contiguous smod cells (smod polygon hereafter) to each

wup point.

4. We drop (a) two cities that would have had too small a population (well under

300,000) if we carried out an analogous split in step 1 above (Bridgeport-Stamford

and Poughkeepsie-Newburgh, us), (b) five cities more than 5 kilometers from an smod

polygon after the spatial join in step 3 (Asheville, Augusta-Richmond County, Jackson

(Mississippi), Concord, and Myrtle Beach, us), and (c) Thanjavur, India, whose smod

polygon is implausibly small (one grid cell).
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5. We move wup points that are outside of but less than 5 kilometers from the nearest

smod polygon into a more appropriate location within the polygon (Thoothukkudi

(Tuticorin), India and Little Rock and Victorville-Hesperia-Apple Valley, us). This does

not change the city sample but creates a more plausible city center for trip sampling.

6. We merge wup points that fall within the same smod polygon in one case where we

deem it appropriate because they are essentially subcenters of a larger metro area,

summing their populations and using the point location of the largest city in the smod

polygon (The Woodlands absorbed into Houston, us).

7. In the remaining cases where multiple wup points fall within the same smod polygon,

we split the polygon into smaller polygons, one surrounding each point. Where

relevant, we split the polygon at an international border (Detroit, San Diego, El

Paso and Laredo, us) or a large water body (Oakland/San Francisco, us). Where

no such clear division is available, we split the smod polygon so that the resulting

area assigned to each city is proportional to its population, with an elasticity of

0.57, based on Ahlfeldt and Pietrostefani (2019). When there are two cities in the

polygon, we use the following algorithm. Let the two cities A and B have center

points CA and CB , and populations PA and PB . We define their boundary as the

set of points Z such that dist(Z,CA)/dist(Z,CB) = (PA/PB)0.57/2. That defines a

quadratic form. Without loss of generality, define a new Euclidean coordinate system

(x, y) such that CA is the origin and CB is at (0, b). Then the boundary is defined

by: x2 + y2 = [x2 + (b − y)2](PA/PB)0.57. Using this algorithm, the following city

pairs are split: Raniganj/Durgapur; Durg-Bhilainagar/Raipur; Bhiwandi/Mumbai;

Kanhangad/Kannur; Ottappalam/Kozhikode (Calicut); and Kayamkulam/Kollam,

India; Round Lake Beach-McHenry-Grayslake/Chicago; and Trenton/Philadelphia,

us. In three remaining cases, three cities fall within the same polygon: Mission Viejo/

Riverside-San Bernardino/Los Angeles Denton-Lewisville/Fort Worth/Dallas, and

San Jose/Oakland/San Francisco, us. In these cases, we define boundaries pairwise,

and then apply them in descending order of city size. The algorithm produces a few

small exclaves: areas assigned to a city center that are only connected to it via another

city’s polygon. In these cases we manually re-assign the exclave to the city to which it

is adjacent.
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8. Select all built pixel centroids within each resulting city polygon, create a 500-meter

buffer around them, and add any areas wholly surrounded by this buffer polygon, to

define the final city polygon.

Panel a of figure A.1 below shows our city boundary, and the built-up areas within it, for

a medium-sized city, Jamnagar in Gujarat, which we use for illustrative purpose throughout

this appendix.

B. Trip Definitions

This section describes how we determine the within-city trips to query on gm. We define

a trip as an ordered pair of points (origin and destination) within the same city. A trip

instance is a trip taken at a specific time on a specific day. A location/point refers to a pair

of longitude-latitude coordinates identifying the centroid of a roughly 40-meter ghsl pixel.

We require that trip endpoints are at least one kilometer apart in haversine length, for three

reasons. First, the rounding of travel times and lengths introduce potentially non-classical

measurement error in our computations of travel speed. Second, gm does not always return

a driving time under traffic conditions for very short trips. Even when it does, the returned

travel times are sometimes very inconsistent and the routes involve unnecessary detours.

Third, walking is an easy alternative to driving for short trips, and sources of error such as

the unobserved time cost of finding parking, etc. will be a more significant component of

the trip.

Our target sample for city c is 15
√
Popc trips, where Popc is the projected 2018 population

of city c from United Nations (2019), and 21 trip instances per trip, to ensure variation across

times of day. That is approximately 158,000 trip instances for our smallest cities, 223,000

instances for a median-sized city, and 1,522,000 instances for the largest city (Delhi).1

We define four types of trips: radial (2/9 of all trips), circumferential (1/9), gravity (1/3),

and amenity (1/3). For each trip between an origin and destination, we also sample the

reverse trip.

1By comparison, in the 2017 us National Household Travel Survey (nhts), the 180th, 100th, 50th, 10th and
1st most sampled us metro areas have about 200, 900, 2,500, 12,000, and 49,000 trips, respectively.
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Radial trips

Radial trips are defined in a polar coordinate system with respect to a city center. They

have one end at a randomly located point within 1.5 kilometers of the city center as

defined above. Distance from the center is drawn from a truncated normal distribution

with mean 0, standard deviation 0.75 kilometer and support [0, 1.5] kilometers. For each

‘central’ endpoint, we determine the other endpoint using one of two methods with equal

probability:

1. Absolute distances of AbsDist ∈ {2, 5, 10, 15} kilometers (equally weighted) are drawn.

For each of these four distances, we pick a random point within the built-up area of

the city that is between (AbsDist− 0.2) and (AbsDist+ 0.2) kilometers from the first

endpoint.2 See panel b of figure A.1 for illustration with the city of Jamnagar. Lighter

shades of red distinguish longer trips.

2. Distance percentiles relative to the largest possible distance for any trip between built-up

areas of the city are drawn from a uniform distribution from the 1st to 99th percentile

(excluding distances less than 500 meters). See panel c of figure A.1 for illustration

with the city of Jamnagar.

If a city has no valid trips for a given absolute distance +/-0.2 kilometer, the trips assigned

to that distance are reallocated to the distance percentiles sample.3 Similarly, if there are not

enough unique 40 m pixels that are AbsDist +/-0.2 kilometer from the center destination to

meet a given absolute distance’s quota, the remainder of the quota is filled with randomly

drawn distance percentiles instead.

Circumferential trips

Like radial trips, circumferential trips are also defined in a polar coordinate system with

respect to a city center. Circumferential trips originate at a random origin at least 2

kilometers away from the city center. The analogous destination is at the same distance

2In the absence of a built-up point between (AbsDist− k,AbsDist+ k), we increment k by 0.1 and search
again. We stop when either all picked central endpoints have been paired with another random endpoint or
until k = 1 (at which point, we pick a new central endpoint).

3Only 67 (or roughly a third) of the cities have a maximum distance to centroid of 15 kilometers or more.
110 (or 61%) of the cities have a maximum distance of 10 kilometers or more. 169 (or 94%) of the cities have a
maximum distance of 5 kilometers or more, and all cities have a maximum distance greater than 2 kilometers
(with the smallest maximum distance being 3.6 kilometers).
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(+/-0.2 kilometer) from the centroid, 30 (+/-3) degrees clockwise or counter-clockwise from

the origin. See panel d of figure A.1 for illustration with the city of Jamnagar.

Gravity trips

Gravity trips are designed to match the length profile of trips sampled in the us nhts and

the Bogotá Travel Survey. We identified each location-pair using the following algorithm:

1. Consider a randomly picked initial point (GravityPoint) and a length (GravityLength

kilometers) drawn from a truncated Pareto distribution with shape parameter 1 and

with support between 1 kilometer and 250 kilometers (corresponding to a mean of

roughly 5.52 kilometers).

2. Choose a point randomly from among all points at a straight-line length between

(GravityLength− 0.2) kilometer and (GravityLength+ 0.2) kilometer from the point

GravityPoint. If there are no such points, start over from (1) with a new pair of

(GravityPoint,GravityLength).

See panel e of figure A.1 for illustration with the city of Jamnagar. Lighter shades of red

distinguish longer trips.

Amenity trips

Amenity trips join a random endpoint with another endpoint corresponding to one of 12

amenity types (e.g. schools, meals, religion). First, we systematically search Google Places

for all establishments of each type in a city to identify the most popular business categories

associated with them. Then, we use these categories as search keywords to identify the most

“prominent” trip destination returned by gm near each trip origin.

The weighting of trips across these amenity types is based on a mapping of amenity

types to trip destination purposes from the 2017 us nhts. The nhts has 20 categories of

trip destination purpose, a subset of which we aggregate up to 12 amenity types (trip share

in parentheses, conditional on being in relevant subset): Buy goods (27.1%), work (20.2%),

buy meals (14.7%), recreational activities (6.4%), exercise (6.4%), buy services (4.7%), schools

(4.5%), religious or community activities (3.8%), healthcare including adult and child care

(4.0%), change transport (1.9%), other general errands (5.6%), and other (0.8%).
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The set of keywords we use to search for amenities on gm were picked from among the

most popular business categories (assigned by Google) among the establishments within 50

kilometers of each city’s center.4 In particular, to identify the keywords for each city:

1. For each amenity type, we exclude business categories that are in the 1% tail of

rarest business categories (across all cities) unless doing so leaves us with less than

30 categories – in which case, the size of the tail we remove gets reduced until we have

30 labels. We call this the truncated global category list.

2. We drop any city and amenity type pair with no categories from the global category

list. We re-apportion the share of trips to be defined for the city-type pair evenly across

all other amenity types in the city.

3. Starting from the global category list for each amenity type, we remove the 1% tail

of rarest business categories in the city-type pair. If that leaves us with less than 10

categories, we reduce the size of the tail to remove until we get back to 10. We call this

the truncated city category list.

The number of amenities to search for using each keyword in the truncated city category

list is proportional to the number of times the keyword appears as a business category in

the city.

On each query, gm returns an ordered list of up to 20 establishments, one of which we

choose as our amenity endpoint. We want to make sure that the locations we are choosing

match our expectations of the trip purpose category and do not require trips that are either

too far beyond the extent of the city or too short for reliable travel times. So, we restrict

amenity endpoints to establishments:

• with at least one business category from our list of truncated global categories of the

corresponding amenity type.

• that are less than 50 kilometers and more than 1 kilometer away in (haversine) distance

from where the query is centered.

4Choosing different search keywords for each city makes sure that we are defining trips to establishments
in places where they exist. For example, churches are very common in some Indian cities but rare in others.
Assuming their frequency also signals their popularity as a trip destination, we define more religion trips to
churches in cities where they are more common.
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We choose as amenity endpoint the establishment that is listed first among the remaining

ones. When queries by a particular keyword repeatedly fail to return nearby establishments

with a relevant global category, we re-apportion the trip share of that keyword proportion-

ally among the remaining keywords for the amenity type.

The set and ordering of establishments returned by a query depend on the zoom level on

the gm interface. gm relies on a combination of proximity and "prominence" to identify the

20 most relevant establishments to return.5 At high zoom levels, gm puts more weight on

establishments close to the center of the search than more prominent establishments further

away. We fix the resolution at “14z” for all amenity trips. For some sense of how high a

zoom level this is, note that on a typical 19-inch monitor in the Chrome browser, the map

covers an area of approximately 8-12 square kilometers.

Panels f, g, and h of figure A.1 illustrate for the city of Jamnagar our selection of school,

religion, and healthcare trips, respectively.

C. Querying trips on Google Maps

Our target sample was 2,735,442 trips across all cities and strategies. Between June 5 and

November 13 of 2019, we queried 57,175,086 instances of 2,733,330 trips. Of them, we ignore

0.12% of instances, including: (a) 11,220 instances (and 12 trips) that gm did not return

any route for, (b) 53,874 instances (and 2,129 trips) with implausible routes where the travel

distance was shorter than the straight-line distance, and (c) 6,811 instances (and 220 trips)

where the routes were too indirect (travel distance was at least 50 kilometers greater than

the straight-line distance). We ended up with 2,730,969 queried trips, or 99.8% of our target.

Across cities, the mean is 99.9% with a coefficient of variation of 0.5%.6 The median (as well

as the mean) trip was queried 21 times (with a standard deviation of 4.9) and 90% of the

trips were queried at least 15 times.

We wanted the distribution of trip departure/query times to roughly resemble the dis-

tribution of departure times on a typical weekday.7 However, we also wanted enough trip

queries from each time period of the day for the fixed effects to be precisely estimated, so we

5An establishment’s "prominence" is determined "by its ranking in gm’s index, global popularity, and other
factors"

6
44% of the trips were queried in June and 1% were queried in November, with the remainder evenly split

across the four months in between.
7We rely on the 2017 nhts in the us.
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Figure A.1: Illustrations for the city of Jamnagar

Panel a: Built-up and overall area Panel b: Radial trips of absolute lengths
2 km, 5 km, 10 km, and 15 km from the center

Panel c: Radial trips over uniformly Panel d: Circumferential trips around the center
picked distance percentiles

Panel e: Gravity trips Panel f: School trips
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Figure A.1 (continued): Illustrations for the city of Jamnagar

Panel g: Religion trips Panel h: Healthcare trips

over-sampled sparse overnight periods to make sure that the quietest hours of the day get

no fewer than one-fifth of the number of queries at the busiest hour of the day. In particular,

at any hour of the day, we tried to query the following share of the day’s total queries: 9 pm

– 6 am: 1.6%, 6 am: 4.1%, 7 am: 6.8%, 8 am: 6.2%, 9 & 10 am: 5.0%, 11 am: 5.7%, 12 & 1 pm:

6.0%, 2 pm: 6.6%, 3 pm: 7.5%, 4 pm: 8.0%, 5 pm: 7.4%, 6 pm: 5.2%, 7 pm: 3.5%, 8 pm: 2.5%.

To be able to perform large numbers of queries on gm over short periods of time,

we distributed the job across multiple processors that would query simultaneously. We

automated the process such that at any time of a day, we activated as many processors as

needed to satisfy the intended number of instances per trip as well as the planned hourly

distribution of queries.

Panel a of figure A.2 shows the realized distribution of query times across hours of the

day, and it very closely matches the planned distribution. The median trip was queried at

8 different 15-minute time slots of the day and 90% of the trips were queried at 4 or more

time slots. The query times for each trip were spread out throughout the day: 88% of the

trips were queried at least once between 6 am and 6 pm and once between 6 pm and 6 am.

We wanted to have an even spread of days and times across cities and trip

types/strategies. So the order in which the trips were queried was randomized. Panel b

of figure A.2 shows the stable realized proportion of trip types across hours of the day.

Walking and transit trips

We do not expect walking times for a given trip to vary by either the day or the hour of day.

However, walking speeds do vary based on slope and the density of the network of streets
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Figure A.2: Queries by time of the day
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and pedestrian paths. So, unlike for driving times, we aimed to query each trip only once

for walking times. We also try to query each trip via walking at the same departure time as

one of the trip’s driving instances, while making sure the overall distribution of departure

times via walking would resemble the distribution of departure times via driving (as in

Figure A.2). We executed the walking queries between October 9 and December 15 of 2019

and, due to a technical problem, ended up querying more than we planned (2 instances per

trip on average). gm returned at least one walking route for all but 89 (out of 2,735,442)

trips.

gm does not generally track public transit in real time, but instead relies on fixed

schedules that are periodically updated by transit authorities using the open-source General

Transit Feed Specification. Thus, for any given trip, we do not expect any meaningful

variation across weekdays in our travel times by transit. However, transit availability may

differ significantly between day and night. So, we aimed to query two instances of each

trip via transit: one during the day (7 am - 7 pm), one at night (7 pm - 7 am), both during

weekdays (Monday-Friday). Conditional on day or night status, we draw departure times

for each transit instance from the same distribution that we impose on the driving instances.

Wherever possible, we also try to match the exact departure times of two of the trip’s driving
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instances.8 We executed the transit queries between October 14 and December 21 of 2019,

and due to a technical hiccup, ended up querying more than we planned (3 instances per

trip on average).

There are several important caveats to the transit data. First, gm returned no routes

on 17% of the queries and for 25% of the trips. Second, we do not expect the schedules

to include informal transit providers, which own the large majority of India’s bus fleet.9

Third, some returned routes are implausible. Specifically, we exclude routes that (1) require

walking all the way (69% of instances). Of instances that return a transit route, we also

exclude those that (2) require waiting over an hour to start the trip (8% of day time instances

and 39% of night time instances), or (3) are slower than their walking counterpart (38%

of instances), which happens when gm uses inter-city rail, presumably because it is the

only nearby transit alternative, to create highly convoluted itineraries. Following these

exclusions, only 18% of our trips offer viable transit alternatives on at least one instance,

and they are highly concentrated in the largest cities. In 159 of our 180 cities, less than 10%

of trips are viable by transit. We cannot distinguish whether the absence of a viable transit

route is due to limitations in the city’s transit network or limitations in gm’s coverage of the

transit network. With that in mind, we report the 15 cities with at least half our trips covered

by gm in Table A.1.

Appendix B. Other Data Sources

Open Street Map: Road network and water bodies data

Our measures of road network characteristics and water bodies come from OpenStreetMaps

(osm), a collaborative worldwide mapping project. We used osmnx (Boeing, 2017) to

download the OpenStreetMap network within each city (with boundaries as defined above)

on two occasions for separate purposes. In May 2020, we downloaded the entire network of

driving roads as a shapefile, along with information on road class. We use this network for

the purpose of mapping our gm trip routes to osm road classes and counting intersections

8Because some driving trips are never queried at night, matching the departure times requires us to
sometimes query both transit instances of a trip during the day. Overall, 57% of our transit trip instances
took place during the day.

9See https://data.gov.in/catalog/number-buses-owned-public-and-private-sectors-india, last ac-
cessed, 6 September 2018.
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Table A.1: Ranking of cities by transit network coverage

Rank City State Coverage

1 Bangalore Karnataka 0.90
2 Pune (Poona) Maharashtra 0.88
3 Chennai (Madras) Tamil Nadu 0.86
4 Ahmadabad Gujarat 0.86
5 Mumbai (Bombay) Maharashtra 0.78
6 Rajkot Gujarat 0.76
7 Coimbatore Tamil Nadu 0.76
8 Surat Gujarat 0.76
9 Hyderabad Telangana 0.72
10 Mysore Karnataka 0.72
11 Delhi Delhi 0.67
12 Vadodara Gujarat 0.64
13 Jaipur Rajasthan 0.61
14 Lucknow Uttar Pradesh 0.56
15 Bhiwandi Maharashtra 0.54

Notes: Coverage refers to the share of trips with at least one instance with a viable transit route
returned by GM.

along the route. In December 2020, we downloaded summary statistics on the total road

network in each city from osmnx (intersections count and angle distribution, total road

length by type, grid-like road network, road elevation, grade and bearing distribution, and

river and coastline length). We use these measures to construct city-level covariates.

Google Places: Establishment data

We collected data on the location and characteristics of Google Places establishments by

searching trip destinations (e.g. banks) on gm. For each search, we specify a keyword

(e.g. “bank”), a pair of coordinates to center the search on, and a resolution zoom level.

gm returns up to 20 establishments on each search. Our objective is to collect every

establishment on Google Places that is a potential trip destination in each of our cities in

India. Couture (2016) shows that a similar methodology returns almost all restaurants in

the United States.

Keywords We divided our search keywords into 14 trip purpose categories, based on def-

initions created by the nhts: work, school, exercise, transport, childcare, adultcare, goods,

services, meals, errands, healthcare, religion, other. Within these 14 categories, we identified

109 keywords from Google Places’ list of recognized ‘Place Types’. Table B.1 shows all the
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Table B.1: Keywords to search within each trip purpose category

Category Keywords (in order)

work ‘office’

school ‘school’

exercise ‘gym’, ‘sport complex’

transport ‘transit station’, ‘bus station’, ‘train station’, ‘subway station’, ‘airport’, ‘taxi stand’

childcare ‘day care center’, ‘child care’, ‘nursery school’, ‘preschool’

adultcare ‘adult day care center’, ‘assisted living facility’

goods ‘supermarket’, ‘store’, ‘bakery’, ‘book store’, ‘car dealer’, ‘clothing store’, ‘convenience
store’, ‘department store’, ‘electronics store’, ‘florist’, ‘furniture store’, ‘gas station’, ‘hard-
ware store’, ‘home goods store’, ‘jewelry store’, ‘liquor store’, ‘pet store’, ‘shoe store’,
‘shopping mall’

services ‘bank’, ‘auto repair shop’, ‘hair salon’, ‘beauty salon’, ‘dry cleaner’, ‘pet care’, ‘accounting’,
‘ATM’, ‘bicycle store’, ‘car rental’, ‘car repair’, ‘car wash’, ‘electrician’, ‘funeral home’, ‘hair
care’, ‘laundry’, ‘lawyer’, ‘insurance agency’, ‘locksmith’, ‘movie rental’, ‘moving com-
pany’, ‘painter’, ‘pharmacy’, ‘plumber’, ‘real estate agency’, ‘roofing contractor’, ‘travel
agency’, ‘veterinary care’

meals ‘Restaurant’, ‘cafe’, ‘meal delivery’, ‘meal takeaway’

errands ‘police station’, ‘post office’, ‘library’, ‘embassy’, ‘city hall’, ‘courthouse’, ‘fire station’, ‘local
government office’, ‘police’

recreation ‘bar’, ‘theater’, ‘movie theater’, ‘museum’, ‘art gallery’, ‘park’, ‘amusement park’, ‘aquar-
ium’, ‘bowling alley’, ‘campground’, ‘casino’, ‘night club’, ‘stadium’, ‘zoo’

healthcare ‘hospital’, ‘doctor’, ‘dental clinic’, ‘medical clinic’, ‘medical center’, ‘therapy’, ‘dentist’,
‘physiotherapist’, ‘spa’

religion ‘church’, ‘mosque’, ‘temple’, ‘community center’, ‘synagogue’

other ‘cemetery’, ‘lodging’, ‘parking’, ‘RV park’, ‘storage’

keywords within each category.

Zoom level gm’s establishment search algorithm returns establishment based on both prox-

imity and prominence. In general, a high zoom level means that gm puts more weight

on proximity than on prominence, which is desirable given our objective of collecting all

establishments, not just prominent ones. So we set our zoom level high at “17z”. For some

sense of how high a zoom level this is, note that on a typical 19-inch monitor in the Chrome

browser with the side panel minimized, this implies a coverage area of approximately one

square kilometer, such that individual building outlines appear, even for buildings less than

5 meters wide, even in small cities.

Number of queries We seek to collect all establishments by making a sufficient number of

queries at random locations within cities. For each category and city:
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1. We pick the first keyword

2. We make X queries in random locations throughout the city. We set X to be propor-

tional to (area)1/3 to make more queries in larger cities with more ground to cover.

3. We count the share Y of queries that return new establishments i.e. establishments

that have not shown up on previous iterations.

4. If Y ≥ 10%, we return to step 2 and repeat

5. If Y < 10%, we move to the next keyword and repeat from step 2. We stop when we

have searched all keywords.

Location of queries For each query, we pick location coordinates randomly from within the

built-up extent of the city. But since gm only returns up to 20 establishments on each query,

we sample more in areas with high expected establishment density. In particular, we assign

each pixel within the city a number of D = u(10 + d − p) where d is the (normalized)

distance to the city center, p is the (normalized) population density, and u is a draw from a

uniform distribution between 0 and 1.10 Then, pixels are drawn sequentially for querying

in increasing order of D.

Weather data

Hourly weather data (rain, thunderstorm, temperature, humidity, wind speed, dewpoint,

and atmospheric pressure) were obtained from Meteostat (https://dev.meteostat.net/,

last accessed, 9 April 2021), which compiles its data from other organizations like the

National Oceanic and Atmospheric Administration (noaa), Deutscher Wetterdienst and

Environment Canada. For each city, we identify up to three nearest weather stations within

40 kilometers of the city center and query the Meteostat api for their weather data at every

hour of every day for which we collect travel times from gm. For cities with more than

one nearby weather station, we use weighted averages of the weather variables where the

weights are the inverse haversine distances between the station and the city center.

We recovered weather data for 162 cities during the trips collection period. The median

city-day has 8 weather readings and more than 90% of city-days have at least 2. On an

average day, 24 (typically large) cities report weather every hour of the day. The number of

10Population density measures are based on data at the 1-kilometer grid level from gpw (CIESIN 2016).
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weather readings per day for a given city varies little across days. The remaining 18 cities

are missing data because Meteostat does not have a weather station within 40 kilometers of

the city center. Over the five months when we collected weather data, it rained 6.5% of the

time and there were thunderstorms 0.4% of the time.

Public holidays

According to the website https://www.officeholidays.com/countries/india/2019, there

were 51 holidays falling on a weekday during our main data collection period between June

and November 2019. Using descriptions provided by the data source, we retained 37 more

important ones corresponding to religious festivals like Diwali (festival of lights celebrated

in many parts of India) and major civic celebrations like Independence Day. Following a

search of Google News we also identified 15 strikes in the largest Indian cities, including six

that we deemed more important.

For the six national holidays during our data collection period, we estimated the same

specifications as in column 7 of table 2, enriching it with an indicator variable corresponding

to each of these public holidays. For five out of six of these public holidays we estimate a

positive effect on speed, ranging from 0.5% to about 3%. 0.5% corresponds to a ‘Saturday

effect’ as estimated in column 1 of table 2 while 3% is closer to a Sunday effect (4.5%) in the

same specification. Interestingly, the only insignificant effect, a precisely estimated zero, is

for Anant Chaturdashi, when only civil servants have the day off.

The remaining 31 public holidays are not celebrated everywhere. Separately for each

state, we thus duplicate again the specification of column 7 of table 2 adding an indicator

variable for each celebration. Because speed variations are less pronounced in smaller cities,

we limit our sample to cities of more than 0.5 million residents. We have as many as eight

religious celebrations and civic holidays in Odisha and as little as one in Punjab. Across

21 separate regressions, we estimate 78 coefficients for public holidays. Of these 52 are

positive and significant, 19 are negative and significant, and 7 are insignificant. Positive

and significant coefficients range from slightly above zero like a Saturday to 5 or 6%,

slightly above the faster travel speed enjoyed on Sundays. Higher coefficient (in the 10-15%

faster range) are estimated only for the Kut festival in Manipur and the major festivals

of Diwali and Durga Purja in Assam. The negative coefficients we estimate are mostly

in the -0.5% to -4% slower than a standard week day. Out of 19 negative coefficients, 10

pertain to the last day or two of the Ganesh Chaturthi festival. The closure of this major
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Hindu celebration honoring the deity Ganesh is in many parts of India associated with

large processions. Another three negative coefficients are associated with the Ayudha Purja

celebration, including in Maharashtra where people decorate their vehicles and exhibit them.

A further three are associated with state election days.

Turning to strikes, we estimate 2% slower traffic on 22 October 2019 during the national

strike for banks. We also estimate indicators for days when large strikes took place in the

four main cities of India: Delhi, Mumbai, Kolkata, and Bangalore. Out of 15 strike indicators

we estimate in four separate regressions, eight are negative and significant and five are

positive and significant. Interestingly, the largest positive coefficient we estimate is for Delhi

during the ‘public transport driver’ strike on 19 November 2019. Road travel was about 4.5%

faster than a normal weekday following the absence of taxis and rickshaws, while bus and

subway drivers were not striking. On the other hand, the youth demonstrations following

the global climate strike led to slower traffic in Mumbai and Kolkata on 20 September 2019.

2011 Census of India

We obtained boundaries of towns and villages (fourth level administrative units) from the

World Bank’s South Asia Spatial Database (Li, Rama, Galdo, and Pinto, 2015). Other

information is from the Census of India website. Specifically, population and number

of households by town and village is from the Primary Census Abstract Data Tables

(https://censusindia.gov.in/pca/pcadata/pca.html). Share of population possessing a

car or motorcycle by town and village is from Percentage of Households to Total House-

holds by Amenities and Assets (https://censusindia.gov.in/2011census/HLO/HL_PCA/

Houselisting-housing-HLPCA.html). Pucca and kutcha road length and count of street-

light poles, by town only, are from the District Census Hand Book, Town Amenities files

(https://censusindia.gov.in/2011census/dchb/DCHB.html). Average commute distance

for urban non-agricultural workers by mode by district, are from Table B-28, ’Other Workers’

By Distance From Residence To Place Of Work And Mode Of Travel To Place Of Work - 2011.

(https://censusindia.gov.in/2011census/B-series/B_28.html).

National Sample Survey

Daily labor earnings by district and sector are from the Employment and Unemployment

Survey of the National Sample Survey (nss-eue) 2011–12. District-level aggregates, in
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current us dollars per day, are from the World Bank’s South Asia Spatial Database (Li et al.,

2015).

Other sources

Source for 63% as the share of the urban population with smartphones in India in 2017:

https://www.statista.com/statistics/894084/india-urban-smartphone-penetration/

(accessed 24 February 2021).

Source for mobile network coverage: Collins Bartholomew Mobile Coverage Explorer

https://guides.library.upenn.edu/MobCovExp (accessed 8 July 2020)

Source for public holidays in India: https://www.officeholidays.com/countries/

india/2019.php (accessed 24 February 2021).

Night lights data from from dmsp satellite F-18 2013, based on Baugh et al. (2010), are

available at https://eogdata.mines.edu/products/dmsp/. Image and data processing by

noaa’s National Geophysical Data Center, based on data collected by US Air Force Weather

Agency.

Within-city population density is from WorldPop (Bondarenko et al., 2020) and Gridded

Population of the World (gpw), version 4 (CIESIN 2016).

Appendix C. Variable Construction

A. Trip-level variables

Many variables in Table 2 require dividing a trip into a set of segments. We define these

segments based on gm directions. For instance, the first segment of a trip begins at the trip

origin, and ends at the location where gm provide the first new direction (e.g. “turn left”).

Every location where gm provides a new direction corresponds the end of the previous trip

segment and the beginning of a new segment. Together, the set of trip segments characterize

the trip route.

Distance to city center The city center is defined in Appendix A. We define a trip’s distance

to the city center as its average distance to the city center, integrated along a straight line

path from the trip’s origin to the trip’s destination. In about 0.01% of cases where the

integral cannot be calculated due to rounding in the log term, we use an average of origin

and destination distance to center.
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Upward and downward gradient gm only returns the change in elevation on a trip segment

when requesting walking time (and biking time, which is not available in India). To ensure

that this “walking” query takes the same route as the “driving” trip in our sample, we

input the end of each segment on that route as a throughpoint in our gm walking request.11

For each of these walking requests, gm returns segment distance in meters and change in

elevation in meters. To compute the upward gradient measure, we only keep segments

with a positive change in elevation. For these segments, we divide the sum of the change

in elevation by the sum of distance.12 We compute the downward gradient measure in a

similar way.

Share of trip on each road class Each edge in the Open Street Maps network receives a tag

which characterizes its road class. We follow the osm road classification and divide roads

into six classes:

1. Motorways: Expressways consisting of restricted access dual carriage ways with 2 or

more lanes in each direction with limited access via interchange. We also include

the less frequent osm type “trunks” in the motorways category. Trunks are national

highways connecting major cities.13

2. Primary Roads: State highways linking major population centers.

3. Secondary Roads: District roads linking smaller population centers, or major through

routes within city limits.

4. Tertiary Roads: Other roads linking towns and villages, important routes linking

different localities within a city.

5. Residential Roads: Roads used for local traffic, not major through routes.

6. Other: Includes roads tagged as “Unclassified” (least important roads in a network) or

“Road” (roads whose class is unidentified by osm).14

11
gm accepts a maximum of eight throughpoints in addition to trip origin and destination, so we implement

the same throughpoint selection algorithm described in Appendix D to replicate Intents trips. The algorithm
described in section Appendix D uses smartphone “pings” as candidate throughpoints. Here we instead use
the end of each trip segment as candidate throughpoints.

12Some changes in elevation are implausibly large. We winsorize change in elevation at 75 meters per
segment, corresponding to the 90

th percentile of the distribution of maximum segment change in elevation
across trips.

13These definitions would be roughly similar in countries other than India, and for instance motorways are
equivalent to freeways in the United States.

14We ignore service roads (designed to access a venue) as well as all special road tags (e.g. pedestrian roads,
cycleways, etc). However, we include all the “link” tags in their corresponding road class, for instance we
classify a “motorway_link” tag (e.g. a highway ramp) as a motorway.

18



We assign a road class to each gm trip segment as follow. First, we create a buffer zone

with a 2 meter radius around the two endpoints of each segment. Then, if the buffers at

both endpoints of the segment intersect with an osm edge of the same road class, we assign

the segment to that road class.15 If the two endpoints of a segment intersect with two edges

of different road classes, we set that segment to missing.

We then take any unassigned segments and repeat the above steps after increasing the

buffer size from 2 to 5 meters. We then iterate again with a 10, 20, and 30 meter buffer.

We classify a segment as having “missing” road class if the algorithm above does not

successfully assign it a road class.

Below we compute the length, in kilometers, of the different classes of roads in each

city. We find that motorways account for 3.0% of the roadway in Indian cities, primary

roads account for 2.9%, secondary roads account for 4.0% and tertiary roads account for

8.3%. Hence the four most important road classes account for less than 20% of the roadway.

However these road classes account for nearly 70% of travel in our simulated trips. More

precisely, we can compute the share of a given trip on a given road class as the distance-

weighted share of its segments that have been assigned a given road class. We end up with

22% of trip distance on motorways, 18% on primary roads, 14% on secondary roads, 14%

on tertiary roads, 10% on residential roads, 5% on other roads, and 19% missing.

Number of Intersections We compute the number of intersections for each trip as the number

of osm nodes within 20 meters of the trip route. Recall that the trip route is a set of segments

from gm, where each segment is a straight line connecting its two endpoints. An osm node

is where two edges intersect, so the intersection of a single carriage with a dual carriage

road would have two nodes.

Number of Right Turns We compute the number of right turns on a trip using the same

gm directions that we used to define segments. Specifically, we consider a step direction

to be a turn if it contains the strings “TURN”, “SHARP RIGHT”, “SHARP LEFT”, “TAKE

THE RAMP ON THE RIGHT”, or “TAKE THE RAMP ON THE LEFT”. We consider a step

direction to be a right turn if it is a turn and it additionally contains the word “RIGHT”.

Right turns are against traffic in India as driving is on the left.

15If only one point (beginning or end) intersects with an osm edge of a given road class, and the other point
does not intersect anything, we assign that road class to the segment.
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Number of Google Maps establishment We compute the number of Google establishments for

each trip as the number of establishments in our Google Places sample located within 20

meters of any segment along the trip route.

B. City-level variables

Area Area within the city boundary as defined in the main text, in square kilometers.

Elevation variance Specifically, this is the variation of elevation across nodes in the osm road

network. Node elevations are queried using the gm api accessed via osmnx.

Road length Each edge in the osm network receives a tag which characterizes its road class.

The four road classes that we include in our measures of city road length (motorways,

primary, secondary, tertiary) are, as described above, the most important classes of roads.

For each class we measure total road length in kilometers.16

We note that certain cities have incomplete street networks on osm. For instance, some

cities have a large share of missing osm roads in our mapping of gm trip route to the

osm road network described above. Even in these cities however, visual comparison of the

osm road network with the gm road network (or satellite images) suggests that motorways,

primary, and secondary roads are never missing, while tertiary roads, which also enter our

“major roads” measure, are only infrequently missing. The coefficient on “major roads” in

Table I.1 is still significant when we exclude tertiary roads, but smaller by 30 to 50 percent.

Grid-like road network osmnx calculates the compass bearing (“bearing” for short) from each

directed edge’s origin node to its destination node. The bearing captures the orientation of

the edge relative to north. We use a city’s distribution of edge bearings to characterize how

‘grid-like’ its road network is in two separate ways: ‘orientation’ which captures the share

of edges conforming to the network’s main grid orientation, and ‘Gini’ which captures the

dispersion in the distribution of edge bearings.

Orientation. A grid is a set of roads intersecting at perpendicular angles. In a grid all

bearings are either perpendicular or parallel to each other. The orientation grid metric

16In the osm network, both carriage ways of a motorway count as separate edges (i.e. once in each
direction). We experimented with counting dual carriage ways only once when measuring length, and also
with measuring lane-kilometers, instead of just edge kilometers. These adjustments generate measures of
length by road class that are very highly correlated with our preferred measure.
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Table C.1: Summary statistics for Indian cities

Mean St. dev. Min. Max.

Population (’000, Census/our delineation) 1,220 2,848 63 22,683
Log population (Census/our delineation) 6.41 0.97 4.14 10.0
Population (’000; UN, 2018) 1,486 3,108 306 28,514
Population growth 1990-2018 (%) 135 113 22 944
Area (km2) 246 469 19 5,068
Log area 4.97 0.91 2.96 8.53
Total roads length (km) 1,789 3591 25 33,730
Major roads (km) 326 670 8 6,136
Share households with car/jeep/van (%) 9.25 5.29 0.75 31.8
Share households with scooter/motorcycle/moped (%) 39.9 12.7 3.30 71.9
Mean daily earnings ($) 5.00 1.93 2.20 15.1
Elevation variance 232 781 1.53 9411
Water length (km) 99.8 188 0 1526
Lights per km 35.9 69.9 0.048 712
Network 0.151 0.054 0.064 0.397

Notes: Cross-city averages not weighted by population. 180 cities. Major roads include motorways,
primary roads, secondary roads, and tertiary roads. Earnings are for industrial workers. For
population, the two sources differ both because of the target year and because they are based on
different boundaries. See below for the computation of the network variable.

measures the proportion of edges in a city’s road network that conform to the dominant

grid orientation in that they are perpendicular or parallel to the modal edge bearing.

Let g index each edge in the road network of city c, and let xcg be the edge bearing

rounded to the nearest degree, and xmodalc be the modal edge bearing modulo 90 of city

c. For example, if a city’s grid were oriented N-E-S-W, then xmodalc would equal 0. Let

δgc,xmodalc ,ν be an indicator for whether edge g in city c conforms to grid orientation xmodalc

within a bandwidth error of ν:

δic,xmodalc ,ν =


1 if (xg − x0ct) mod 90 <= ν

1 if (xg − x0ct) mod 90 >= (90− ν)

0 else.

(c1)

We then compute our grid-like measure as:

Orientationc =
∑g∈Ic δgc,xmodalc ,ν

Qc
, (c2)

where Ic is the set of all edges in city c, and Qc is the number of edges in Ic.
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Figure C.1: Most and least grid-like city road network using orientation grid metric

Panel a: Chandigarh - Grid Score = 0.4 Panel b: Shillong - Grid Score = 0.06

Maps of the OSM road networks, for Chandigarh, the most grid-like city, and Shillong, the least-grid-like city.
We measure how grid-like a city is based on the share of edges in its road network conforming to the grid’s
main orientation, i.e., whose compass bearings are within 2 degrees of the modulo 90 modal bearing in the
network.

In the paper, we report results using a narrow error bandwidth of ν = 2◦. We experi-

mented with a wider bandwidth of 5
◦. We also experimented with allowing for more than

one dominant grid orientation, because for instance larger cities can have smaller sub-grids

whose orientation differs from that of the main grid.17 These variations produce highly

correlated rankings of cities, and we therefore prefer the simplest version above. Visual

inspection suggests that our methodology performs well at ranking road networks by how

grid-like they are. Figure C.1 shows the most and least grid-like cities according to the

orientation metric, side-by-side.18

Gini. We modify the definition of the Gini index for income inequality to measure the

normalized dispersion of edge bearings. For each city c, we define 360 different possible

bearings, indexed by k, and ranked by their frequency such that k = 1 is the least frequent

bearing and k = 360 is the most frequent bearing. In a perfectly gridded city, the four

most frequent bearings, spaced 90 degrees apart, would account for 100% of edge bearings.

Therefore, we can interpret high values of the following Gini index as corresponding to

17We also experimented with weighting edges by length, but such measures appear to overestimate how
grid-like small cities with few very long roads are.

18We noted above that smaller road classes are missing in some cities, which could bias our grid measure if
certain types of road are more grid-like. Our results are robust to limiting the sample to the subset of cities
for which we have a more complete road network. It would be possible to compute measures of how grid-like
the road network is separately for different types of road defined above, instead of only for the total road
network. However, visual inspection suggests that these measures do not perform well at capturing overall
how grid-like cities are. For instance motorways are often curved and outside of the main grid.
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cities with a more grid-like network:

Ginic =
Qc × 360− 2 ∑360

k=1 ∑k
l=1 θcl

Qc × 360
, (c3)

where θcl is the number of edges in city c with bearing l. The Gini and orientation metric

have a correlation of 0.72.

The assumption of 360 possible distinct bearings is arbitrary, and we also computed Gini

indices after rounding up each bearing to the nearest even degree (i.e. by assuming 180

possible bearings.) We also experimented with defining modulo 90 bearings (instead of

modulo 360 as above).19 These variations produce Gini indices that are highly correlated

with the index defined above that we use in the paper.

Water length We calculate the length of river centerlines, coastlines, and lakeshores within

each city from osm.

Population Data at the town and village (fourth administrative) level are from the 2011

Census. City values are area-weighted sums of the town and village values. In other words,

we first sum populations from all towns/villages falling entirely within the city boundary.

For towns/villages that cross the city boundary, we add the a share of the town’s population

equal to the share of the town/village’s area falling within the city.

Share of car and motorcycle owners Data on the share of households that possess a

“Car/Jeep/Van” and the share that own a “Scooter/Motor Cycle/Moped” at the town and

village (fourth administrative) level are from the 2011 Census. City-level values are weighted

averages of these town/village values, using each town/village’s share of households in the

city, and pro-rating towns/villages that fall partially within the city as described in the

calculation of population (above).

Mean daily earnings Cities that fall within a single district are assigned the district’s value.

Cities that cross a district boundary are assigned a population-weighted average analogous

to the car share described above.

Street lights “Electricity-Road Lighting Connection (Numbers)”, a count of street lights, is

available at the town level in the 2011 Census. We sum counts for all towns within the city.

For towns straddling the city boundary, we add a fraction of the count equal to the share of

the town’s land area falling in the city.

19For some smaller cities with sparser road networks, the number of distinct edge bearings is less than 360.
In these cases, we adjust the calculation to consider only the total set of bearings present in that city, which
may be less than 360.
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Share of paved roads Length of paved (Pucca) and dirt (Kutcha) roads at the town level are

from the 2011 Census. We aggregate to the city level analogously to streetlights. Share paved

is length paved divided by total (paved+dirt) length.

Potholes We obtain data on potholes from an app designed by Intents Mobi (https://

intents.mobi/). In Appendix D, we provide more details on how Intents recruits drivers

and collects geolocation data (we also use an app from Intents to compare gm trips with

actual trips, and we describe this exercise at length). Intents’ app identifies a candidate

pothole as an event of sudden acceleration in both horizontal and vertical movement. At

least three such events in the same location identify a pothole. The dataset that we obtain

from Intents contains the location of all potholes, and pings that geolocate drivers and allow

us to measure their distance traveled in kilometers. Our final dataset has 23,512 potholes

and 1.03 million kilometers of travel, collected from September 9 2019 to December 18 2019

in 131 cities.

In each city, we compute potholes per kilometers as the average number of potholes

encountered per kilometers driven in a city.20 Over our entire sample, the average number

of potholes per kilometers driven is 0.023. Some cities have very few kilometers driven, so

we removed all cities where the standard error of our measure of potholes per kilometers is

above a cut-off of 0.05.21 Using that metric, 87 cities remain in our sample. Our results were

not sensitive to varying this cut-off.

Night lights Night lights is the sum of all pixels’ digital number for 2013 within city

boundaries.

Spatial Gini of population The spatial Gini of population for city c is defined as

PopGinic =
∑Nc
i=1 ∑Nc

j=1|Pic − Pjc|
2N2

cPc
, (c4)

where the population of pixel i in city c is Pic, Nc is the number of pixels in city c, and Pc is

the mean value of all pixels in c. Population of each 100-meter pixel is from WorldPop.

20Note that our measure is per kilometers driven in the Intents data, not per overall kilometers of roads
available in a city. So a pothole on a frequently used road contributes more to our measure than a pothole on
a rarely used road.

21To compute this standard error, we assume that encountering a pothole on any given kilometer is a
binomial event that happens with a constant probability p = 0.023 (computed across all cities). We can then
approximate the standard error of p in a given city as p(1− p)× (km driven).
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Appendix D. Using Intents app data to evaluate Google Maps accuracy

Intents trip data To evaluate the accuracy of gm speed data, we collect actual trip data in

Indian cities using a smartphone app. Our app was designed specifically for our project

by Intents Mobi (https://intents.mobi/), a mobile app developer with experience creating

geolocation apps for the Indian market.

We collected data from September 9th to December 18th 2019. Until October 2019 our app

was available in 20 cities representative of the size and regional distribution of cities within

the 11 Hindi-speaking majority states (the app instructions are in English and Hindi). App

usage was geofenced (restricted) to within 50 kilometers of the center of large cities and 25

kilometers of the center of small and medium size cities. In late October 2019 however, at

Intents’ request we extended app availability to all of India, because recruitment was being

hindered by low ratings our app was receiving from prospective users unable to use it in

their city. App users are paid per kilometer driven in a motor vehicle. On average we paid 1

inr per kilometer on daytime trips and 2 inr (1.5 to about 3 cents) per kilometer at night (11

pm to 5 am), but Intents varied rates across cities, time of day, and day of week to achieve

targets of 15,000 kilometers traveled per city, and 10% of night trips from 11 pm to 5 am. In

effect this meant higher rates in smaller cities at night.22 We did not collect any information

about these drivers, but Intents recruited drivers through online advertisements targeted at

frequent drivers, like Uber or Ola drivers.

Drivers press a button when they start and finish a trip. For the entire duration of the

trip, every second the app records a “ping” consisting of the phone’s current position and

time. We collect these pings as received by Intents’ servers, as well as individual trip id

numbers constructed by Intents.23 In total, we received 65,881,813 million pings in 249,938

trips. After eliminating trips not in one of our cities (13% of trips), trips with a straight-line

distance from origin to destination of 0 (11%), trips shorter than 0.2 kilometer (18%), trips

longer than 100 kilometers (0.2%), trips slower than 2.5 km/h (8.9%), trips faster than 100

km/h (1.0%), and weekend trips (24%), our clean weekday sample of trips is 90,894 trips

22Our instructions were simple and made to fit on a single screen, written in Hindi and English. Users had
to be car drivers, click on a button at the beginning and end of each trip, and sign off when not in the car.
Rates and limits were clear, with 6 hours maximum paid per day, and a maximum of 50 kilometers of the
higher night rate.

23An app user may forget to begin and end trips within the app. In that case, Intents ends the trip if the
vehicle has not changed position for more than 10 minutes (the trip ends at the time of first ping in that final
location). Also, sequences of pings sometimes fail to be recorded on the provider’s server. In our analysis
sample, the maximum gap between pings is less than one minute for more than 75% of our trips.
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Table D.1: Cities with most Intents trips

City # Intents trips Population rank

Delhi 35,525 1
Udaipur 7,289 103
Jaipur 6,660 10
Lucknow 6,094 11
Chandigarh 4,920 55
Nellore 4,530 74
Indore 3,920 16
Bangalore 2,823 4
Chennai (Madras) 2,804 5
Bhopal 2,309 22

Note: Number of Intents trips in cleaned sample for the 10 cities with the most Intents trips.
Population rank is among all cities in our sample based on 2018 UN WUP population.

in 89 cities. Table D.1 shows the 10 cities with the most Intents trips in the Intents sample,

with city name, number of Intents trips, and city population rank.24 Overall, we have one

city (Delhi) with a large sample of 35,500 trips, and 13 cities with smaller samples between

1,000 and 7,500 trips. These samples are too small for city-specific analysis, so we divide our

sample into three different city-size bins, large cities with population rank 1 to 20 (65,260

trips), medium size cities with rank 21 to 60 (12,699 trips), and small cities with rank over

60 (12,935 trips.)

Figure D.1 shows the number of trips at each hour of the day in large, medium and small

cities. Night time trips in small cities are exceedingly rare, despite the higher pay rate that

we offered to incentivize them. In small cities, we have only 17 trips taken during the three

hours from 1 am to 4 am, representing about 0.1 percent of trips in these cities. In the

analysis that follows, this prevents us from measuring average speed at night in small cities

with precision.

Google Maps replication of Intents trips To assess the accuracy of gm travel speed, we at-

tempted to replicate each Intents trip on gm as faithfully as possible. For each Intents trip,

24Only five of these top ten cities (Delhi, Udaipur, Lucknow, Chandigarh, and Bhopal) are in the 20 that we
had initially selected for data collection, with an additional city (Indore) being in the in a list of 10 alternative
cities that we provided Intents with in case data collection was difficult in our preferred cities. Overall, we
achieved only modest success at restricting our sample to a chosen set of cities.
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Figure D.1: Number of Intents trips by hour of day
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we query a matching trip on gm that takes the same route, and starts within 5 minutes of

the Intents start time.

To characterize the exact route taken by each Intents trip, we divide each trip at “through-

points”. The throughpoints are locations (“pings”) where we observe the driver along the

route between origin and destination. We can input these throughpoints into gm, to ensure

that gm returns travel time for a route that is as similar as possible to that of the matching

Intents trip. However, gm accepts a maximum of 8 throughpoints, so to decide which Intents

pings to use as throughpoints, we implement the following algorithm:

1. We define N = min(2D− 1, 8), where D is trip length in kilometers, as the maximum

number of throughpoints on a trip. As an example, if a trip is 2 kilometers, N = 3, or

three throughpoints dividing the trip into four segments of 0.5 kilometer on average.

2. The next step is to decide which pings to define as throughpoints. We aim to have

throughpoints at roughly equal distance from one another along the route of the trip.

If there are fewer than N pings, then each of them is a throughpoint. Otherwise,

we divide the route of each trip into N + 1 subtrips of equal length and define

the N endpoints of these subtrips as candidate throughpoints. For each candidate

throughpoint, we select the nearest ping along the route as the actual throughpoint.25

3. We then eliminate throughpoints that are redundant, in the sense of falling near

a straight line between the previous and following throughpoint. Specifically, we

25In rare cases where ping frequency is low and the route from one ping to its closest neighboring ping in
one directions includes an entire subtrip, then we designate this isolated ping as a throughpoint. Also, this
approach can generate fewer than N throughpoints, usually when pings are bunched at one end of the trip or
the other. In that case, no information is lost by having fewer than N throughpoints.
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eliminate any throughpoint x located between two throughpoint y and z where the

staightline distance yz is within 10% of the sum of distances yx and xz. This is because

gm often responds to such redundant throughpoints inappropriately, for example with

an extra loop around the block.

Sometimes, our gm query fails, in the sense that it doesn’t return a trip with a route

similar to that of the Intents trip.26 This happens when we have very few Intents pings with

which to establish a route, or when these pings form a pattern that is too convoluted. In the

analysis that follows, we eliminate the 33 percent of trips for which there is a more than 20

percent difference between the Intents distance and its gm equivalent.

Comparing Intents and Google Maps speeds We now compare trip speed across three different

samples: Intents trips, the gm replication of Intents trips, and the gm trips simulated using

the radial, circumferential, gravity, and amenity methodology described in the paper. For

all computations that follow, we weight the simulated trips to ensure that every city has the

same total weight in both the Intents and the simulated trip samples.

Panel a of figure D.2 plots average trip speed at each half hour of the day in large,

medium, and small cities, for all three samples. In all panels, we show two standard error

confidence bands around the estimates from the Intents trip sample.27 We find that the

average speed of Intents trips is nearly identical to that of their gm replication within every

city size bin and hour of the day. We conclude that on average, gm and Intents speed are

similar when computed from similar trip samples. However, average speed appears lower

in our overall gm sample of simulated trips, especially at night.

This speed difference is not surprising, because many factors that affect driving speed

systematically differ between our Intents and simulated trip samples. In section 4, we

showed that trip length, and distance to the city center, are important determinants of trips

speed. So in panel b of Figure D.2, we show estimated time effects from a regression of log

travel speed on log trip length, log distance to city center, and time effects.28 Overall, the

time effects for all three samples align remarkably well. The better fit relative to panel a

is due to the trip length control. In the Intents sample, night time trips are almost twice

26Our query also fails if gm rejects a throughpoint, which happens for 2 percent of trips.
27Confidence bands for the main gm simulated sample (not shown) are very small, and confidence bands

for the gm replication of Intents trip (not shown) are generally similar to those shown for Intents trips.
28We normalize the time effects in the gm simulated sample to equal zero at 3 am. We then normalize the

time effects within each sample so that all three curves take the same value at 5 pm.
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Figure D.2: Trip sample speed comparisons
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Panel b: Estimated time effects
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The figure compares speed at each half hour of the day, for our main gm simulated trip sample (solid line),
the Intents trip sample (dotted line), and the gm replication of Intents trips (dashed line). Panel A shows
average speed within each half hour. Panel B shows estimated time effects in a regression of log travel speed
on log trip length, log distance to city center, and time effects. Panel C shows fitted speed values from the
same Panel B regression. All confidence bands shown are two standard errors. Confidence bands for the
main gm simulated sample (not shown) are very small, and confidence bands for the gm replication of Intents
trip (not shown) are generally similar to those shown for Intents trips. All averages and regressions for the
main gm simulated sample are weighted to match the distribution of trips across cities in the Intents sample.

as long as day time trips, so they appear faster in the absence of a trip length control.

In our simulated sample, trip length is constant across time of day by construction. This

demonstrates that with appropriate trip-level controls, our simulated gm sample replicates

congestion patterns from actual trips across cities of different sizes. For instance, averaging

the time effects in Panel B suggests that as reported in the main text, the speed difference
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between night time (11 pm to 6 am) and peak time (10 am to 2 pm and 4:30 pm to 9 pm)

trips in large cities is 29.4% in our main simulated gm sample, 28.0% in the Intents data, and

31.7% in the gm replication of Intent trips. In medium sized cities, the night time vs peak

time differences in these three samples is 20.5%, 21.9%, and 21.9%.

Finally, in panel c of figure D.2 we compare the average speed in our three samples,

computed as a fitted value from the same regression used to obtain the time effects. We

compute all fitted values at the average trip length and average distance to the city center

from the full simulated gm sample. We find that average fitted speed is more similar

across samples than mean speed, but speeds from Intents trips and their gm replication still

appear somewhat faster than our simulated trips. We do not find this remaining difference

concerning given how special the Intents trip sample is.29 The Intents sample provides actual

trip speed, but we are not confident that Intents’ trip id accurately defines discrete trips that

individuals take. As documented above, the raw Intents sample had a significant share of

extremely short trips, and of trips whose route is so convoluted as to not be replicable by

gm. Our cleaning procedures reduce the impact of such problems, but they cannot entirely

resolve them. Another issue with panel c is that the three fitted speed curves shift up

or down relative to one another depending on the trip length used to compute the fitted

value, because the estimated coefficient on trip length in the speed regression varies across

samples. In particular, the estimated impact of trip length on speed is smallest in the Intents

sample, likely due to measurement error in trip length.

Overall, this exercise shows that gm can replicate actual speed even in smaller Indian

cities. In addition, congestion patterns from a sample of actual trips resemble those from

our sample of simulated gm trips, after appropriately controlling for trip characteristics.

Appendix E. Comparison with Uber Movement data

We use data from Uber Movement (https://movement.uber.com) based on actual trips taken

by Uber riders for five Indian cities, Mumbai, Delhi, Hyderabad, Bangalore, and Kolkata.

Uber provides data by multi-hour period by day, or alternatively, by individual hour by

calendar quarter. Given the importance of within-day variation in speed, we use the latter

for the last three quarters of 2019 when we collected our main data. Uber Movement divides

each city into small zones and provides a travel time between zone pairs for each hour of

29One explanation for faster Intents trips is that Uber and Ola drivers limit their driving to faster roads.
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the day. For example, in Bangalore, there are 198 zones, averaging between three and four

square kilometers each, and Uber Movement reports travel times for 91.3% of all 198× 197×
24 = 936, 342 zone pair-hours.30

If these were average speeds of actual trips between these zone pairs, we could compare

them directly to our gm trips. However, they differ from real trips in a critical way. Uber

Movement computes zone-pair travel times using all trips that pass through a pair of zones.

Because these zones are fairly small, we expect a typical Uber trip to generate information for

many pairs. For example, a real trip that passes through ten zones will provide travel time

information for 10×(10-1)/2 = 45 different pairs. We call these pairs trip segments. These

segments will contain a different distribution of zones than the actual trip. For example,

the beginning and end zones represent 20% of the zones in an actual ten-zone trip. But in

the 45 trip segments, they represent only 9%. This is a problem because we expect that the

beginning and end of a trip are on average slower than their middle, for the same reason

that long trips are faster than short trips—drivers must use slow local roads at the beginning

and end of many trips.

A second complication of comparing our gm data with the Uber Movement data is that

there is no way of knowing the actual road distance traveled between two zones in an

Uber Movement trip segment. Therefore, we measure the haversine distance between the

centroids of the zones of the endpoints of either each trip instance (gm) or each trip segment

(Uber Movement) and compute the corresponding effective speed.

To make the samples comparable, we restrict attention to gm trip instances matched to a

corresponding Uber Movement observation by zone of origin, zone of departure, and hour

of departure. Uber Movement’s effective definition of each city is generally modestly smaller

than ours. In Bangalore, 92.9% of our 1,046,363 gm trip instances have both their origin and

their destination in a zone reported by Uber Movement. Uber Movement provides matching

travel times data (origin, destination, and hour) for 94.9% of these, or 922,497. Conversely,

only 13.1% of zone-pair-hours reported by Uber Movement have a corresponding gm trip in

our Bangalore sample.31

Consistent with our conjecture above, the effective travel speeds computed from Uber

Movement travel times are much faster than the corresponding speeds computed from

30In Bangalore, these zones correspond to official city wards. We exclude the travel time information that
Uber Movement reports for each zone to itself, which is provided only for the last hour of the day.

31Using instead all Uber Movement observations only makes minor differences. On the other hand, gm trip
instances within the Uber-defined city limits is further from the center on average.
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Figure E.1: Comparing Uber Movement with different parts of Google Maps trips
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Pooled data for five cities (Mumbai, Delhi, Hyderabad, Bangalore, and Kolkata). Series computed as described
in the text.

simulated trip instances obtained from gm. We plot these speeds for all hours of the day

in figure E.1. For instance, at 6 am, we observe an average effective speed of nearly 24

kilometers per hour for Uber Movement instead of about 16 kilometers per hour for gm.

Note that we pool data for all five cities together but the patterns are the same for each city

taken individually. Note also that we do not condition out trip characteristics as we do in

the rest of the paper because some characteristics like trip type are missing from the Uber

data while others like trip length cannot be directly compared across both groups.

Since Uber Movement oversamples the fast middle parts of trips as noted above, it is more

appropriate to compare speeds computed from Uber Movement data with speeds computed

for the middle part of gm trips instead of the entire trips. To compute speed for the middle

part of trips, we proceed as follows. gm provides length and duration data for each step of

a trip instance (that is, each portion of a trip between changes of direction) in meters and

seconds. Unfortunately, step travel speed is not updated in real-time. It appears to reflect

an average travel speed for that step.

We create step-specific speeds as follows. First, we compute the speed of segment n that

is part of trip i, Zi n. Segment n could be the first kilometer, or the middle (defined as all
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but the first two and last two kilometers). Because step travel speed is not available in real

time, this speed is time invariant. We then compute the average speed of segment n relative

to the average speed of an entire trip, Zn
Z . Next, we compute speed during hour τ , Sτ , by

averaging across all observed (real-time) speeds of whole trip instances during this hour.

Finally, we compute speed for segment n at hour τ as Snτ = Zn
Z × Sτ .

The resulting speed profiles by time of the day are plotted in figure E.1. While the first

kilometer of trips is sizeably slower than their average speed, the middle part of trips is

much faster.32 We focus attention on long trips, over 15 kilometers, which are most likely

to use fast roads, and for which the middle (as defined above) represents the largest share.

Throughout the day, we find that the speeds we infer from Uber Movement travel times are

slightly below the speeds we estimate for the middle part of trip instances longer than 15

kilometers, and slightly above their overall speeds. For shorter trips both are slower than

their Uber counterparts (not shown).

Appendix F. Alternative speed indices

In this appendix, we derive a number of alternative speed indices. Then, we describe how

these alternative indices correlate with our benchmark index, the city-fixed effect in equation

(2), using the specification from column (4) of Table 2.

A. Laspeyres and Paasche Indices

Travel conditions may vary across cities in ways that may not be well captured by our

benchmark equation (2). For instance, Figure 2 suggests that peak hours are relatively

slower and last longer in more congested cities. To capture this, we estimate a more flexible

version of equation (2) where we allow both the intercept and the vector of coefficients to

vary across cities:

logSi = αc(i)X
′
i + sc(i) + εi . (f1)

Equation (f1) includes many coefficients for each city. Comparing for instance the time of

day effect for trips between 9:30 and 10 pm across 180 cities will not be insightful. Rather

32Although we do not plot them here, we find that the last kilometer of trips is about as slow as the first.
The second and second to last kilometers are also slower than the trip average but faster than the first and last
kilometers.
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than keep all these coefficients separate, we aggregate them into index measures of speed

for each city.

More specifically, we proceed as follows. We first estimate equation (f1) for each city

separately. Each of these 180 regressions can be used to generate a predicted speed for

all trips in the data, telling us how fast trip i would be if it were taken in city c: Ŝci =

exp
(
α̂cX

′
i + φ̂2

c/2
)
, where φ̂c is the estimate of the standard deviation of εi in city c. We also

predict speeds from an analogous ‘national’ regression using all trip instances by imposing

common coefficients regardless of the city of travel: Ŝi = exp
(
α̂X ′i + φ̂2/2

)
.

Then, we compute a predicted duration for each trip i if it were to take place in city c

(T̂ci = Di/Ŝci) or ‘nationally’ (T̂i = Di/Ŝi). Finally we can compute a relative speed index

for each city:

Lc =
∑i T̂i

∑i T̂ci
. (f2)

The index Lc represents the time it would take to conduct all trip instances in the data at

the estimated speed for city c relative to the predicted time it would take to conduct these

trips at the average estimated ‘national’ speed. Lc is a unitless scalar, but we can multiply it

by ∑iDi/ ∑i T̂i, the average national speed, to transform it into a predicted speed for city i.

We note that the index Lc defined in equation (f2) resembles a Laspeyres price index

in the sense that we compare the speed of trips across Indian cities for the same national

bundle of trip instances. Like a standard Laspeyres index, Lc may be sensitive to sampling

error or to out-of-sample predictions.

Alternatively, we can compute the predicted time it takes to undertake all city c trips

in city c relative to the predicted time it takes to undertake all city c trips from a national

regression. That is, we can compute:

Pc =
∑i∈c T̂i

∑i∈c T̂ci
. (f3)

This alternative speed index is analogous to a Paasche price index. Because we compare city

trips at predicted city speed to city trips at predicted national speed, this Paasche index will

be less sensitive to the problems of out-of-sample predictions that may afflict the Laspeyres

index above. It is also straightforward to compute the corresponding Fisher index: Fc =
√
Lc × Pc.
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B. Logit indices

We can also compute a broad class of speed indices derived from economic theory. We first

specify a simple utility maximization framework that resembles the logit model of travel

demand of Ben-Akiva and Lerman (1985). The travel decision is a discrete choice over a set

of trip destinations. Cheaper (shorter) trips receive more weight, with the strength of that

relationship governed by the elasticity of substitution σ. We define the utility from visiting

the destination of trip i in city c as:

uci = log(bci) + (1− σ) log(tci) + εci, (f4)

where tci = ξTci is the time cost of a trip to destination i in city c that takes Tci units of

time at value of time ξ per unit, and εci, the random component of utility, has a Type I

extreme value distribution.33 Note that the value of time ξ does not vary across cities, as

we compute speed indices for a representative traveler. The parameter σ > 1 is an elasticity

of substitution across destinations, and bci is a trip-specific quality parameter capturing all

factors other than time costs making some destinations more desirable than others.34

As shown by Anderson et al. (1992, pp. 60–61), the expected utility of a traveler in city c

is equal to the expected value of uci’s maximum across the Nc travel destinations available

in city c:

E
(

max
i∈Nc
{uci}

)
= log

(
Nc

∑
i=1

exp [log(bci) + (1− σ) log(tci)]

)
= log

(
Nc

∑
i=1

bcit
1−σ
ci

)
. (f5)

Now consider two cities, c and c′. Define a relative price index Gc,c′ as the factor by which

travel costs in city c would have to change in order to equalize expected utility in the two

cities:

log

(
Nc

∑
i=1

bci(Gc,c′tci)
1−σ
)

= log

(
Nc

∑
i=1

bc′it
1−σ
c′i

)
, (f6)

so that:

Gc,c′ =

(
∑
Nc′
i bc′it

1−σ
c′i

∑Nc
i bcit

1−σ
ci

)1/(1−σ)

=

(
∑
Nc′
i bc′iT

1−σ
c′i

∑Nc
i bciT

1−σ
ci

)1/(1−σ)

, (f7)

33Ben-Akiva and Lerman (1985) show how to derive a travel accessibility index from a logit model of travel
demand. Anderson, de Palma, and Thisse (1992) show the correspondence between the logit and ces models.

34In Table G.2, we present an index computed at σ = 0. Technically, values of σ < 1 are inconsistent
with utility maximization. In practice, the index at σ = 0 simply weights all trips equally and intuitively
corresponds to a perfect complement case.
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where the second equality uses tci = ξTci. The relative price index Gc,c′ is best characterized

as a relative travel accessibility index. It is low when comparing a city c with many

destinations to another city c′ with few destinations (gains from variety), and when travel

in c is short-distance and fast and travel is c′ is long-distance and slow.

We now develop a simple non-parametric procedure to isolate a pure speed index deter-

mined only by speed differences across cities. Instead of comparing two cities c and c′, we

compute this speed index in each city c relative to a nationally representative city. To do

this, we replace the denominator of Gc,c′ with a ‘national index’ that has exactly the same

distribution of trip length as in city c, and the same number of trips:

Gc =

(
∑i∈c bciT

1−σ
ci

∑i∈c bciT
1−σ
ci

)1/(σ−1)

. (f8)

Note that we inverted the index to ensure that Gc increases with faster speed (the index

derived above is a price index increasing with time costs.) We compute T ci as the average

travel time of all trips in the national sample with length within 1% of that of trip i in city

c.35 Note that both the city-level numerator and the national-level denominator of Gc have

the same number of trips, and the same distribution of trip lengths. The index in each city

is therefore free of gains from variety and gains from closer proximity to travel destinations,

and determined only by speed differences relative to a national sample.

Instead of tackling the difficult problem of estimating the parameters of Gc, we compute

Gc for a wide range of values of σ and bci. The quality of a destination is unobserved, but if

we restrict our sample to amenity trips, the assumption that bci = 1 is a reasonable starting

point, because we sampled amenity trips to match the trip shares in the us nhts. We also

compute variants of Gc using random draws of bci ∈ U [1, 100] for each trip, thus randomly

allowing certain destinations to be more desirable and to carry a higher weight in the index.

We also experiment with richer nesting structures, in which trips to similar destination

types (e.g. work, buy goods, recreational activities, etc) are more substitutable. To do so, we

divide trips into M groups and compute the following nested ces/logit speed index (Sheu,

2014):

Gnestc =

(
∑M
m=1 G

1−µ
mc

) 1
1−µ

(
∑M
m=1 G

1−µ
mc

) 1
1−µ

, (f9)

35We drop any trip with fewer than 10 corresponding trips within 1% of its length in the national sample
(less than 0.01% of trips).
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and

Gmc =

(
Nmc

∑
i=1

bciT
1−σ
ci

) 1
1−σ

, Gmc =

(
Nmc

∑
i=1

bciT
1−σ
ci

) 1
1−σ

, (f10)

where µ > 1 is the elasticity of substitution across groups, σ ≥ µ is the elasticity of

substitution within groups, and Nmc is the number of trips in group m in city c. We define

groups as the amenity types recorded in Appendix A. In this case, the nested index Gnestc

puts less weight on destination types that are relatively slower in city c; travelers substitute

away from them because they are costlier. We compute these indices using exactly the

same non-parametric methodology described above and compute Gnestc for various values

of µ and σ and distributions of bci. We also experiment with alternative nesting structures

defined by time (e.g. off peak, peak, high peak) or area (e.g. rings).

C. Logit Index with Departure Time Decision

One nested-logit model of special interest allows travelers to choose a departure hour. We

describe this model and its results in detail here. Our objective is to develop a model that

matches the distribution of trip departure times at each hour of the day, which is a key

moment of trip level data. To do so, we calibrate the ‘quality’ of each hour in a given city

to match the share of travelers departing at that hour, given travel cost. The intuition is

straightforward: if a large share of trips depart at peak hours despite high peak travel costs

(i.e. low speed), then peak hour trips must be of higher quality and receive higher weight

in our speed index.

So we set up a nested-logit model where travelers first choose a travel destination i ∈ Nc
(outer nest), and then a departure hour h ∈ {0, 1, ..., 23} (inner nest). Nc is the total number

of trips in our sample in city c. We can write the speed index from this model as in equation

(f9) and (f10), with appropriate subscripts, as follow:

Gnestc =

(
∑Nc
i=1 G

1−µ
ci

∑Nc
i=1 G

1−µ
ci

) 1
µ−1

, (f11)

with:

Gci =

(
23

∑
h=0

bchT
1−σ
chi

) 1
1−σ

, Gci =

(
23

∑
h=0

bchT
1−σ
chi

) 1
1−σ

, (f12)

where T chi is the national average duration of a trip of the same length and departing at the

same hour as trip Tchi, µ > 1 is the elasticity of substitution across trip destinations (across
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nests), and σ ≥ µ is the elasticity of substitution across departure hours (within nest). We

again inverted the nested-logit price index to ensure that Gnestc increases with faster speed.

First, we compute the parameters bch that capture the quality of a trip taken at hour h in

city c. Within each nest i in city c, the utility from choosing a departure hour h is given by

equation (f4), rewritten with appropriate subscripts as: uchi = log(bch) + (1− σ) log(tchi) +

εchi, which delivers hourly travel shares log
(
schi
sc0i

)
= log(bch)− (σ− 1) log

(
tchi
tc0i

)
. As before,

tchi = ξTchi is the time cost of a trip to destination i in city c at hour h that takes Tchi units

of time at value of time ξ per unit. We then isolate the bch as follows:

bch =
sch
sc0

(
tch
tc0

)(σ−1)

=
sch
sc0

(
Tch
Tc0

)(σ−1)

. (f13)

Note that bc0 is normalized to 1, and that we dropped the i subscript because we calibrate

bch for a representative trip in each city. The second equality uses the assumption that travel

cost t is proportional to travel time T . sch is the share of trips departing at hour h in city c.

We get these hourly departure shares from the Intents data described in Appendix D. For

the 14 cities with at least 1,000 Intents trips, we compute a city-specific bch. For all other

cities, we pool data into three city size bins: large cities with population ranks from 1 to 20,

medium sized cities ranked 21 to 60, and small cities ranked 60+. To compute Tch, the travel

time of a representative trip at hour h in city c, we estimate the following regression:

log(Tchi) = β log(distancechi) +
23

∑
h=1

hourh + εchi, (f14)

where hourh is a dummy equal to one when a trip departs at hour h. We estimate equation

(f14) from a sample of all trips in city (or city size bin) c in our gm trip sample. Tch is the

fitted value of that regression at the average trip length in city (or city size bin) c and at

hourh = 1.

Note that for any elasticity of substitution across hours of day σ and city-specific repre-

sentative trip time Tch, we can find quality parameters bch to exactly match the city-specific

hourly departure shares sch. We lack an estimate of σ, so we compute bch for a wide range

of values of σ.36 Panel a of figure F.1 shows bch in Delhi for σ = 2 and σ = 4 at each hour

of the day. As expected, a larger σ means that departure hours are more substitutable, so

during peak hours the model calls for higher bch to explain the combination of high trip

36σ has two counterbalancing effects on our speed index. The direct effect of a large σ is to put less weight
on the most expensive hours of the day at peak time. The indirect effect of a large σ is to call for high bch at
peak hours, which puts more weight on the most expensive hours of the day at peak time.

38



Figure F.1: Hourly quality parameter bch
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Panel a: bch for different σ in Delhi Panel b: bch by city population bins (σ = 2)

Panel a shows the hourly quality parameter bch calibrated from equation (f13), computed for Delhi with σ = 2
(dotted line) and σ = 4 (solid line). Panel b shows bch computed for large cities (size rank 1 to 20, dashed line),
medium cities (size rank 21 to 60, solid line), and small cities (size rank 61 to 180, dotted line).

shares and high travel costs. Panel b of figure F.1 shows bch for the large, medium, and small

city size bins. We find that even though day time trips are much higher quality than night

time trips everywhere, the difference between day and night time quality is much higher

in smaller cities. This reflects the observed choice of travelers in smaller cities, who take

almost no trips at night, perhaps because they have fewer safe and entertaining night time

trip destinations available to them. As a result, peak time trips get relatively more weight in

smaller cities.

Next, we compute the inner-nest index Gci for each trip i. To compute Tchi, the time

that trip i would take at each hour h in city c, we estimate the regression in equation (f14)

separately for each city. Tchi is then a fitted value from that regression for a trip of the same

distance as trip i that departs at hour h. We compute T chi in exactly the same way, but as a

fitted value from a national regression.

Finally, we compute the speed index Gnestc in each city for values of σ and µ between 2

and 6. Relative to our benchmark index, which weights every trip equally, Gnestc reweights

peak hour trips through three different channels. First, the assumption that departure hours

are substitutable puts less weight on peak time trips, which are most expensive (i.e. slowest).

Second, and working in the opposite direction, the calibrated bch put more weight on peak

time trips, which are of higher quality. The third channel comes from having different

bch in different cities. As shown in Figure F.1, peak time trips get more weight in smaller

cities. Overall, this reweighting of peak time trips makes Gnestc somewhat less correlated
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with congestion than our benchmark index.37

We find a rank correlation of 0.92 between our benchmark speed index and Gnestc for

reasonable values of σ and µ (σ = µ = 2), and 0.79 for implausibly large values of σ and µ

(σ = µ = 6). These correlations are even higher if we restrict our sample to the 16 cities with

city-specific bch. This strong correlation between the various speed indices that we produce

is consistent with a key result of our paper that slow cities are generally slower at all times.38

Appendix G. Additional results, trip regressions

A. Additional specifications

Table G.1 reports a number of variants of our benchmark specification in table 2 column

4. Column 1 uses log effective speed (haversine length divided by time) instead of actual

speed as dependent variable. The speed-effective trip length elasticity is slightly lower than

the speed-actual trip length, because using effective length to define speeds reduces the

distances of longer trips more than those of shorter trips, flattening the relationship with

between log trip speed and log trip length. Column 2 uses speed under “typical” traffic

conditions at the time of day of the request (also provided by gm) as dependent variable,

and columns 3 and 4 limit to peak (10 am to 2 pm and 4:30 pm to 9 pm) and high peak (6

to 8 pm) trips, respectively. Results are very similar to the baseline specification in table 2

column 4.

Column 5 limits attention to radial trips at peak hours going towards the center in the

morning and back towards the periphery in the evening, mimicking archetypal commuting

patterns. Because the trips are radial, beginning or ending near the city center, trip length

and average distance to city center are mechanically highly correlated. As such, the distance

to center relationship is overwhelmed by the trip length relationship and the coefficient on

distance to the center is insignificant.

37Across a sample of all cities, our benchmark speed index has a correlation of -0.60 with the congestion
factor, versus -0.45 for Gnestc , computed at σ = 4 and µ = 2.

38In fact, modeling the departure time choice generates relatively minor reweighting of trips relative to our
benchmark index. This is because travel demand—and therefore the bch shown in Figure F.1—varies little
throughout the day. In the Intents national sample, the hourly departure share between 8 am and 9 pm only
varies from a minimum of 0.05 from 8 pm to 9 pm to a maximum of 0.07 from 6 pm to 7 pm. All three city
size bins show similar patterns. This time period account for about 80% of trips. One caveat is that the Intents
users sample may not be representative of the general population.
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Table G.1: Determinants of log trip speed, variants

(1) (2) (3) (4) (5) (6) (7) (8)
Effective Typical Peak High ‘Com- Congest. Night Day

length traffic peak mutes’ weighted

log trip length 0.14a 0.19a 0.19a 0.18a 0.25a 0.21a 0.19a 0.19a

(0.0076) (0.0052) (0.0043) (0.0042) (0.011) (0.0063) (0.0045) (0.0042)
log distance to center 0.10a 0.083a 0.098a 0.100a 0.0040 0.091a 0.074a 0.088a

(0.0055) (0.0050) (0.0057) (0.0061)(0.0094) (0.0064) (0.0053) (0.0051)

Observations 41,991,655 41,991,65518,735,401 3,532,661 2,058,065 41,991,655 9,154,230 32,837,425
R2 0.33 0.59 0.56 0.56 0.70 0.64 0.62 0.56

Notes: OLS regressions including city, weekday, time of day (for each 30 minute period), and trip type
indicators and weather controls for 180 cities as in table 2. The dependent variable is log effective
speed in column 1, log speed under “typical” traffic conditions in column 2, log speed at peak hours
(departure time between 10 AM and 2 PM or between 4:30 PM and 9:00 PM) in column 3, log speed at
high peak hours (between 6 PM and 8:00 PM) in column 4, log speed for radial trips going towards the
center during the ‘morning’ peak and away from the center during the evening peak in column 5, log
speed computed after weighting trips using a congestion weight given by (Trip duration/trip
duration in absence of traffic)1/λ with λ = 0.3, in column 6, log speed at night (sunset to sunrise) in
column 7, and log speed during the day (sunrise to sunset) in column 8. Robust standard errors in
parentheses. Intents weights used in all columns except column 6. a, b, c: significant at 1%, 5%, 10%.

Column 6 weights trips by their measured congestion factor, as in table G.2, Panel g, with

elasticity of trip speed with respect to the density of vehicles, λ = 0.3. The speed-trip length

elasticity increases slightly, consistent with longer trips more effectively avoiding congestion.

Columns 7 and 8 restrict attention to night (sunset to sunrise) and daytime (sunrise to

sunset) trips, respectively. Results are very similar, with the only difference being a stronger

distance to center effect for daytime trips consistent with greater daytime congestion.

B. Correlations of our baseline speed index with alternative indices

We report cross-city correlations between alternative speed indices and our benchmark index

(the city fixed effects estimated from the specification reported in column 4 of table 2) in

table G.2. We also report the standard deviation, maximum and minimum of each speed

index. Standard deviations vary very little, except for the mean speed indices, which are

constructed on a different (unlogged) scale.

Panel a compares our benchmark speed index to the analogous indices estimated in the

other columns of table 2 that include various trip level controls. All these correlations are
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Table G.2: Pairwise Spearman rank correlations with our benchmark speed index

Index Corr. Std. Dev. Min Max

Panel A: Columns from table 2
(1) 0.942 0.119 -0.359 0.282
(2) 0.944 0.120 -0.362 0.285
(3) 0.998 0.114 -0.327 0.260
(5) 0.984 0.115 -0.353 0.230
(6) 0.918 0.122 -0.348 0.218
(7) 0.924 0.103 -0.319 0.184

Panel B: Trip subsamples
Radial 0.928 0.134 -0.445 0.342
Circumferential 0.914 0.118 -0.319 0.328
Gravity 0.981 0.115 -0.329 0.238
Amenities 0.984 0.115 -0.335 0.280
0.5% sample 0.997 0.117 -0.337 0.273
0.1% sample 0.985 0.119 -0.347 0.275

Panel C: Mean speeds
Simple mean 0.680 3.81 14.2 34.4
Mean unweighted by length 0.729 3.32 14.2 32.0
Mean of “typical” traffic speed 0.672 3.74 13.9 34.0
Mean of uncongested speed 0.570 4.10 15.9 38.0
Mean effective speed 0.677 2.82 8.76 26.9

Panel D: Variants of our main index
Effective speed 0.892 0.132 -0.457 0.315
“Typical” traffic 0.988 0.114 -0.296 0.271
No traffic 0.956 0.097 -0.341 0.315
Fastest trip instance 0.982 0.106 -0.356 0.254
Off peak 0.848 0.106 -0.334 0.240
Peak 0.996 0.120 -0.345 0.275
High peak 0.973 0.129 -0.374 0.283
Peak radial 0.919 0.140 -0.411 0.347
Day (dawn to dusk) 0.994 0.119 -0.334 0.269
Night (dusk to dawn) 0.972 0.113 -0.349 0.268
Night (6 PM to 6 AM) 0.990 0.112 -0.352 0.253

Panel E: Full indices
Laspeyres 0.898 0.140 0.671 1.416
Paasche 0.977 0.117 0.706 1.339
Fisher 0.953 0.126 0.688 1.345
Logit/CES (σ = 0) 0.954 0.120 0.632 1.292
Logit/CES (σ = 2) 0.913 0.125 0.675 1.368
Logit/CES (σ = 4) 0.822 0.152 0.636 1.550
Nested logit (σ = 2, µ = 2) 0.918 0.124 0.719 1.422
Nested logit (σ = 4, µ = 4) 0.846 0.128 0.698 1.419

Panel F: Distance to center
Trips within 5 km of center 0.965 0.127 -0.329 0.386
Trips within 3 km of center 0.910 0.131 -0.337 0.396
Weight by inverse dist. to center 0.944 0.121 -0.333 0.339

Panel G: Weight by powered congestion factor
λ = 0.2 0.936 0.146 -0.457 0.300
λ = 0.3 0.956 0.133 -0.415 0.290

Notes: 180 cities. For each alternative index, the first column reports the Spearman rank correlation
with our benchmark index (table 2 column 4). Other columns report standard summary statistics.

42



above 0.91.

Panel b compares our benchmark index to the analogous indices estimated using the same

specification but considering different types of trips separately. The correlations are again

high. The lowest at 0.91 is with perhaps our most artificial type of trips, circumferential

trips, and the highest is with perhaps our most realistic, amenity trips. Also in panel b, we

show that after randomly dropping a large fraction of our trips (99.9%) within each city, we

still obtain an index with a correlation of almost 0.99 with our benchmark index. This shows

that city-level speed can be credibly measured using samples much smaller than those we

collected.

Next, panel c compares our benchmark index to various measures of mean speed. The

correlations are much lower than in the previous two panels. For instance, the correlation

between our benchmark speed index and mean speed computed as total travel length

divided by total travel time (equation 1) is only 0.68. This is because trip length has a

large explanatory power on trip speed, and average trip length varies systematically across

cities. As a result, mean speeds are sensitive to sampling strategies, unlike our preferred

speed indices that control for trip length.

Panel d reports correlations between our benchmark speed index and speed indices

computed from the estimations reported in table G.1, and related variants. Notably, the

correlation of our benchmark speed index with an index that measures speed using effective

(haversine), rather than traveled, trip length is 0.892. The 20 slowest cities using our

benchmark speed index are all among the 25 slowest cities by effective speed. We can thus

rule out the possibility that slow cities are more efficient at transporting travelers farther for

the same number of straight line kilometers traveled. Slow cities are just slow.

The final part of panel d reports correlations between our benchmark index and speed

indices computed in the same manner as our benchmark but from observations taken at

specific hours of the day. For instance, an index computed using only trips at high peak

time has a correlation of 0.973 with our benchmark index. The correlation with an index

computed using only off peak trips is lower, at 0.85.39 This is consistent with the Intents

departure time weight in our benchmark index giving more weight to peak time trips.

Panel e reports correlations between our benchmark index and more sophisticated

Laspeyres, Paasche, Fisher, and logit/ces indices. The Laspeyres index computed from

39We did not compute speed indices from models with limited scheduling flexibility, as in Kreindler (2018).
These models would essentially put higher weights on peak time trips, so our approach here is simply to show
that speed indices based on only peak time trips are highly correlated with those based on all trips.
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equation (f2) using the same specification as for our benchmark index, but allowing all re-

gression coefficients to vary across cities, has a correlation of 0.90 with our benchmark index.

The Paasche and Fisher indices show even higher correlations. The logit/ces index from

equation (f8), estimated at σ = 0 (the perfect complement case for which all trips receive

equal weight) has a 0.95 correlation with our benchmark index. The correlation remains high

at 0.82 even for an extreme value of σ = 4, which gives a two-kilometer trip about 400 times

the weight of a longer 15-kilometer trip.40 These correlations remain similarly high across

a wide range of random destination quality draws bci (not shown). The nested-logit index

from equation (f9) also delivers high correlations with our benchmark index even for large

σ and µ equal to 4. We already described the high correlation between our benchmark index

and a nested-logit index from a model with departure time choice. Other reasonable nesting

patterns invariably generate high correlations with our benchmark index, suggesting that

our results are robust to modeling travel demand with richer substitution patterns. This

finding further confirms that our benchmark index provides a robust characterization of

travel cost differences across cities, because slow cities tend to be slow at all times, for all

types of trip destinations, and across the city.

Panel f considers indices computed from a sample restricted to trips that are close to the

city center, or computed using higher weights for trips close to the center. These indices all

have a correlation above 0.91 with our benchmark index.

In panel g we take another approach to weighting each trip by how likely it is to be

taken, using the implicit density of vehicles along the route as a proxy. To do so, we

assume that (i) the speed of a trip instance is reduced from the maximum for that trip

solely by vehicle congestion, (ii) the elasticity of trip speed with respect to the density of

vehicles, λ, is constant, and (iii) the density of vehicles is constant along the route. Under

these assumptions, we can weight each trip i by its length, Di, times the implicit density of

vehicles, (Ti/Tnti )1/λ. While these assumptions are unlikely to be strictly true, they manage

to capture the fact that more vehicles slow down traffic and thus slower trip instances should

receive a higher weight given that they represent more travelers. We use λ = 0.2, which is

a standard value in the traffic modelling literature (Small and Verhoef, 2007). We also use a

higher value λ = 0.3 that reduces the weight put on slow trips, since slower speeds in India

may not be caused only by more vehicle traffic. With both values, the indices are highly

40Atkin, Faber, and Gonzalez-Navarro (2018) estimate an elasticity of substitution across retail stores slightly
smaller than 4 for poor Mexican households. This is almost certainly an upper bound: the index considered
here covers a much broader set of destinations that are unlikely to be as substitutable as retail stores.
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correlated with our benchmark index.

Appendix H. Additional results, variance decomposition

Table H.1 reports variants of table 4 for restricted subsamples. Broadly, congestion plays

a larger role near the city center, for peak radial trips, and (mechanically) congestion-

weighted, and that is especially true for the largest cities. However, the role of uncongested

speed remains substantial, and only falls substantially below the role of the congestion factor

when restricting to high peak in city centers of the largest cities. The role of congestion

varies little across trip types, but is generally slightly larger for radial and circumferential

trips than amenity or gravity trips. Throughout all of these samples, the covariance between

uncongested speed and the congestion factor remains negative and fairly small.

Appendix I. Additional results, city regressions

Table I.1 adds three additional regressors to the specifications presented in table 5. Results

are presented in the main text.

Table I.2 reports several variants of table 5 column 3 predicting city speed indices.

Column 1 reports standardized coefficients. Consistent with the main text discussion of

explanatory power, population has by far the largest standardized coefficient in magnitude,

followed by area and roads. In column 2, replacing Census-based city populations with

estimates from United Nations (2019) reduces the coefficient on population by more than a

third, consistent with more measurement error.

Removing tertiary, and both tertiary and secondary roads, respectively, from the defini-

tion of major roads in columns 3 and 4 reduces the coefficient on the roads measure by a

factor of two and three, respectively. They remain precisely estimated. Such roads appear

to be important. Column 5 adds a measure of paved roads from the Census. The coefficient

is small and insignificant, likely because paved roads are poorly measured. Column 6

introduces the Intents potholes, measured as the inverse hyperbolic sine of potholes per

kilometer to allow us to include cities with zero recorded potholes. We restrict the sample

to 87 cities for which Intents has enough driving data to limit the standard error of the

measure to at most 0.05. The coefficient is small, with a large standard error. We interpret
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Table H.1: Variance decompositions of our baseline speed index, variants

Sample Cities All trips High peak trips

Uncongested Congestion Covariance Uncongested Congestion Covariance
speed factor speed factor

Panel A: Distance to city center less than 5 km
All 180 0.665 0.161 -0.087 0.530 0.288 -0.091
Smallest 50% 90 0.810 0.063 -0.064 0.824 0.111 -0.032
Largest 50% 90 0.566 0.236 -0.099 0.408 0.362 -0.115
Largest 25% 45 0.463 0.351 -0.093 0.327 0.463 -0.105
Largest 10% 18 0.407 0.440 -0.076 0.290 0.524 -0.093

Panel B: Distance to city center less than 3 km
All 180 0.643 0.169 -0.094 0.520 0.292 -0.094
Smallest 50% 90 0.746 0.067 -0.094 0.739 0.112 -0.075
Largest 50% 90 0.586 0.233 -0.090 0.441 0.358 -0.100
Largest 25% 45 0.488 0.348 -0.082 0.360 0.462 -0.089
Largest 10% 18 0.457 0.462 -0.041 0.336 0.560 -0.052

Panel C: By trip type
Radial 180 0.745 0.153 -0.054 0.623 0.285 -0.046
Circumferential 180 0.737 0.129 -0.067 0.590 0.287 -0.062
Gravity 180 0.715 0.107 -0.089 0.575 0.228 -0.099
Amenities 180 0.676 0.126 -0.099 0.541 0.265 -0.097

Panel D: Peak radial trips (‘commutes’) Congestion weighted trips
All 180 0.642 0.246 -0.056 0.554 0.231 -0.107
Smallest 50% 90 0.880 0.106 -0.007 0.684 0.121 -0.097
Largest 50% 90 0.504 0.316 -0.090 0.481 0.325 -0.097
Largest 25% 45 0.393 0.408 -0.100 0.371 0.397 -0.116
Largest 10% 18 0.366 0.570 -0.032 0.327 0.478 -0.098
Note: High peak hours are 6 - 8 PM and peak hours are 10 AM to 2 PM and 4:30 PM to 9 PM For the
congestion weight we use λ = 0.3.

this large standard error as meaning that we do not have enough systematic data to make a

careful comparison across cities in this dimension. Column 7 replaces our preferred grid-like

network measure with an alternative: the Gini coefficient of the distribution of compass

bearings of all edges in the osm street network. It is also associated with faster travel, with

a similar magnitude (in both cases a one standard deviation higher value is associated with

about 15% faster travel).

Column 8 replaces our earnings measure with an alternative income measure, night

lights. It again suggests a hill-shaped relationship between income and speed. Finally,
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Table I.1: Further correlates of city indices

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Dependent variable Speed index Uncongested speed Congestion factor

log population -0.18a -0.18a -0.18a -0.15a -0.15a -0.14a 0.036a 0.033a 0.040a

(0.016) (0.015) (0.016) (0.012) (0.013) (0.013) (0.0071) (0.0062) (0.0067)
log area 0.090a 0.10a 0.095a 0.060a 0.073a 0.067a -0.030a -0.029a -0.028a

(0.020) (0.019) (0.019) (0.019) (0.018) (0.019) (0.0083) (0.0071) (0.0078)
Elevation variance -0.036a -0.034a -0.036a -0.027a -0.029a -0.028a 0.0090a 0.0050b 0.0084b

(0.0047) (0.0047) (0.0046) (0.0028) (0.0039) (0.0028) (0.0033) (0.0022) (0.0033)
Water length -0.12a -0.089c -0.13a -0.065c -0.054 -0.080b 0.060a 0.035 0.054b

(0.041) (0.045) (0.040) (0.036) (0.039) (0.035) (0.021) (0.023) (0.022)
log major roads 0.071a 0.054a 0.069a 0.076a 0.060a 0.073a 0.0049 0.0062 0.0037

(0.016) (0.015) (0.016) (0.017) (0.016) (0.017) (0.0053) (0.0047) (0.0051)
log street lights 0.011b 0.0067 0.010b 0.010b 0.0075 0.0091b -0.00094 0.00082 -0.0014

(0.0050) (0.0047) (0.0050) (0.0045) (0.0046) (0.0043) (0.0018) (0.0019) (0.0018)
Network 0.30a 0.25a 0.30a 0.26a 0.20b 0.28a -0.034 -0.055c -0.025

(0.086) (0.085) (0.088) (0.076) (0.080) (0.074) (0.033) (0.031) (0.033)
Earnings 0.026a 0.030a 0.028a 0.012 0.016b 0.014c -0.014a -0.014a -0.013a

(0.0089) (0.0084) (0.0089) (0.0081) (0.0076) (0.0079) (0.0038) (0.0038) (0.0039)
Earnings2 -0.0020a -0.0022a -0.0021a -0.00065 -0.00096c -0.00080c 0.0013a 0.0012a 0.0013a

(0.00053) (0.00053) (0.00053) (0.00048) (0.00049) (0.00047) (0.00023) (0.00023) (0.00024)
Pop. growth 90-18 0.026 0.042b 0.016b

(0.018) (0.016) (0.0072)

Share w. car -0.065 0.18 0.24a

(0.15) (0.14) (0.058)
Share w. motorcycle 0.17a 0.065 -0.11a

(0.061) (0.060) (0.022)
Spatial Gini pop. -0.075 -0.15b -0.078a

(0.073) (0.064) (0.023)
R2 0.64 0.66 0.64 0.61 0.61 0.61 0.52 0.58 0.54
Observations 180 180 180 180 180 180 180 180 180

Notes: OLS regressions with a constant in all columns. Robust standard errors in parentheses. a, b, c:
significant at 1%, 5%, 10%. This table duplicates table 5 in the main text. We additionally include log
population growth between 1990 and 2018 from UN data, the shares of households with access to a
motorbike and to a car from the 2011 census, and a Gini index for the spatial distribution of
population. For the latter, we compute a Gini index for the distribution of population across 90-meter
pixels using the gridded population estimates from WorldPop.

column 9 adds an index of city shape: the first principal component of the six main measures

of city shape (perimeter, spin, dispersion, range, proximity, and cohesion) for 2010 from

Harari (2020). More sprawl (less compactness) is associated with slower travel. We note

that relative to Harari (2020), we are considering a static context, and controlling directly for

water bodies and elevation variance that may affect a city’s shape.

Table I.3 reports several variants of table 5 column 3 with alternative speed indices as

dependent variable. Column 1 uses effective (haversine) distance between trip origin and
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Table I.2: Correlates of city indices, alternative and additional explanatory variables

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Variant Reference UN Top 3 Top 2 Paved Potholes Altern. Altern. City shape

spec. 2018 road road roads network income Harari
Beta coef.population classes classes measure(nightlights) index

log population -1.54a -0.11a -0.17a -0.17a -0.19a -0.18a -0.18a -0.16a -0.16a

(0.023) (0.015) (0.016) (0.016) (0.025) (0.016) (0.018) (0.016)
log area 0.75a 0.016 0.12a 0.13a 0.094a 0.061b 0.095a 0.10a 0.092a

(0.021) (0.018) (0.017) (0.020) (0.025) (0.020) (0.025) (0.018)
Elevation variance -0.24a -0.024a -0.032a -0.034a -0.036a -0.046b -0.036a -0.029a -0.035a

(0.0067) (0.0038) (0.0040) (0.0047) (0.020) (0.0049) (0.0046) (0.0043)
Water length -0.22a -0.14a -0.15a -0.16a -0.13a -0.092c -0.14a -0.066 -0.10b

(0.049) (0.041) (0.042) (0.041) (0.047) (0.042) (0.051) (0.043)
log major roads 0.67a 0.069a 0.036a 0.022b 0.069a 0.077a 0.071a 0.073a 0.063a

(0.021) (0.012) (0.0090) (0.016) (0.017) (0.016) (0.015) (0.013)
log street lights 0.15b 0.0048 0.012b 0.012b 0.0091c 0.013c 0.0093c 0.016a 0.012b

(0.0066) (0.0053) (0.0053) (0.0047) (0.0067) (0.0051) (0.0050) (0.0053)
Network 0.14a 0.16 0.34a 0.36a 0.28a 0.20c 0.16b 0.35a 0.35a

(0.12) (0.096) (0.10) (0.086) (0.11) (0.067) (0.10) (0.099)
Earnings 0.47a 0.046a 0.031a 0.033a 0.029a 0.025b 0.030a 0.23c 0.038a

(0.013) (0.0088) (0.0089) (0.0086) (0.012) (0.0085) (0.12) (0.0089)
Earnings2 -0.47a -0.0033a -0.0023a -0.0023a -0.0021a -0.0019a -0.0022a -0.015b -0.0025a

(0.00076) (0.00055)(0.00055)(0.00051)(0.00067)(0.00051) (0.0065) (0.00055)
log paved roads 0.0056

(0.0081)
asinh potholes per km 0.0069

(0.029)
Harari index -0.0092b

(0.0036)
R-squared 0.64 0.42 0.62 0.60 0.64 0.67 0.63 0.64 0.67
Observations 180 180 180 180 180 87 180 179 155

Notes: OLS regressions with a constant in all columns. Robust standard errors in parentheses. a, b, c:
significant at 1%, 5%, 10%. This table reports variants of main text table 5 column 3. Column 1 reports
standardized coefficients (beta coefficients). Column 2 uses city population from the UN in 2018.
Columns 3 and 4 measure road length without tertiary roads and without secondary and tertiary
roads, respectively. We use the inverse hyperbolic sine instead of a log transformation to avoid
excluding a small number of zeroes. Columns 5 adds a measure of (log) paved roads computed from
the 2011 census. Columns 6 adds a measure of (log) potholes per kilometer computed using Intents
data. Column 7 considers an alternative network index, the Gini coefficient for the distribution of
edge compass bearings in the road network, which also measures how grid-like the road network of
a city is. Columns 8 uses log total night lights and its square to measure income and its square.
Column 9 includes an index of city shape: the first principal component of the six main measures of
city shape (perimeter, spin, dispersion, range, proximity, and cohesion) for 2010 from Harari (2020).

destination to calculate trip speed, thereby penalizing more circuitous trips. Column 2 uses

gm’s estimate of ‘typical’ travel time to calculate trip speed. Columns 3 and 4 restrict to trips

at peak (10 am to 2 pm and 4:30 pm to 9 pm) and high peak (6 pm to 8 pm) hours, respectively.
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Table I.3: Correlates of city indices, alternative indices

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Dependent variable Effective Usual Peak High peak Commute Congestion Night Day Full

speed traffic hour hour speed weight speed speed controls

log population -0.17a -0.19a -0.20a -0.21a -0.21a -0.19a -0.18a -0.19a -0.13a

(0.020) (0.015) (0.017) (0.017) (0.020) (0.020) (0.016) (0.016) (0.015)
log area 0.068b 0.098a 0.11a 0.11a 0.14a 0.064a 0.12a 0.090a 0.046b

(0.026) (0.019) (0.020) (0.020) (0.027) (0.024) (0.018) (0.020) (0.018)
Elevation variance -0.064a -0.033a -0.037a -0.033a -0.039a -0.047a -0.036a -0.042a -0.027a

(0.0065) (0.0033) (0.0055) (0.0071) (0.0063) (0.0076) (0.0046) (0.0044) (0.0058)
Water length -0.19a -0.090b -0.13a -0.12a -0.12b -0.15a -0.13a -0.13a -0.16a

(0.042) (0.042) (0.042) (0.042) (0.058) (0.045) (0.040) (0.040) (0.033)
log major roads 0.077a 0.065a 0.062a 0.053a 0.061b 0.086a 0.051a 0.075a 0.086a

(0.018) (0.016) (0.017) (0.017) (0.024) (0.020) (0.015) (0.017) (0.015)
log street lights 0.0089 0.011b 0.010c 0.0088c 0.0043 0.012c 0.0088c 0.011b 0.011b

(0.0057) (0.0052) (0.0053) (0.0052) (0.0066) (0.0061) (0.0048) (0.0052) (0.0052)
Network 0.016 0.27a 0.31a 0.31a 0.45a 0.35a 0.33a 0.27a 0.23b

(0.12) (0.085) (0.089) (0.091) (0.11) (0.11) (0.083) (0.090) (0.098)
Earnings 0.031a 0.028a 0.035a 0.043a 0.046a 0.027b 0.034a 0.024a 0.021b

(0.011) (0.0086) (0.0092) (0.0094) (0.012) (0.011) (0.0085) (0.0092) (0.0087)
Earnings2 -0.0023a -0.0019a -0.0028a -0.0034a -0.0037a -0.0024a -0.0025a -0.0018a -0.0016a

(0.00069) (0.00052) (0.00055) (0.00055) (0.00072) (0.00065) (0.00052) (0.00058) (0.00053)
R2 0.54 0.64 0.64 0.65 0.57 0.60 0.63 0.64 0.57
Observations 180 180 180 180 180 180 180 180 180

Notes: OLS regressions with a constant in all columns. Robust standard errors in parentheses. a, b, c:
significant at 1%, 5%, 10%. This table duplicates table 5 in the main text. The dependent variable is
computed in the same manner as in column 4 of table 2 in columns 1-8 using effective speed in
column 1, GM’s usual traffic speed in column 2, peak hour speed (10 AM to 2 PM and 4:30 PM to 9 PM)
in column 3, speed at high peak hours (6 PM to 8 PM) in column 4, speed for trips mimicking
traditional commutes (radial trips towards the center during the morning peak and away during the
evening peak) in column 5, speed for which trips are weighted by a congestion factor (each trip’s
weight is given by the ratio of duration over duration in absence of traffic elevated to the power 0.3)
in column 6, night speed (sunset to sunrise) in column 7, and day speed (sunrise to sunset) in column
8. Column 9 uses the speed fixed effects estimated in the full specification of column 7 in table 2.

Column 5 restricts to radial inward trips during the morning peak and radial outward trips

during the evening peak, mimicking typical monocentric city commute patterns. Column

6 weights trips by their congestion factor raised to the power 0.3. Columns 7 and 8 restrict

to nighttime (local sunset to sunrise) and daytime (sunrise to sunset) trips, respectively.

Column 9 uses the ‘narrow’ fixed effects from column 7 of table 2. In all cases, results are

very similar to those in table 5 column 3.
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Appendix J. Additional Welfare Results

In this appendix, we express the welfare gains from a 10% reduction in uncongested speed

in monetary units, and explore heterogeneity in these gains across cities. For each city, we

compute the yearly welfare gains for the average worker as follow:

250× (distancec/speedc)× commute_sharec ×wage_commuterc × 0.1 (j1)

A number of assumptions are implicit in this equation. We only consider gains to work

commuters, and assume a work year of 250 days, no crowding out from congestion, and

no gains from induced demand. Finally, we assume that the value of one hour of travel

time equals 100% of the hourly wage.41 The share of commuters using motorized on-road

vehicles (cars, motorcycles, on-road buses) and the average commute distance come from

the Indian Census. We get city-specific commute speed at peak time from our gm data. The

hourly wage comes from nss microdata on male workers’ daily earnings. We then compute

a city-specific average wage of vehicle commuters by assuming that these commuters are

the richest workers in their city.42 Due to small nss sample sizes in some cities, we limit

our sample for these computations to the 100 cities with the most observations (at least 76

workers). Appendix B provides additional description of all data sources.

Computing equation (j1) for each city, and focusing on city population-weighted averages

across all cities, we find that a 10% reduction in uncongested speed generates yearly gains

of 1,152 inr per worker (about 16 usd). These gains accrue to the 54 percent of workers who

commute by vehicle, for on average about 0.92 hour daily. These commuters save about 5.5

minutes in travel time per work day from the speed improvement, valued at 100% of the

average wage of vehicle commuters of 119 inr per hour (1.7 usd). These average gains mask

significant heterogeneity across cities, with an interquartile range across cities from 701 to

1,342 inr (10 to 19 usd). The largest average yearly gains per worker are 2,696 inr (38 usd)

in Delhi, which has a high commute share and high commuter wages, and lowest at 361 inr

41A value of time at 50% of hourly wage is commonly used following Small and Verhoef (2007)’s evidence
from rich countries. However, Kreindler (2018) finds much larger values at 400% times the hourly wage using
experimental data from Bangalore. We pick a value of 100% to remain conservative while accounting for the
possibility of higher valuation in developing countries, perhaps due to road or vehicle quality or other costs
like fuel that are relatively more important there.

42We need this assumption because the nss has no information on commutes, and a simple average would
miss that a significant fraction of Indians are too poor to afford a vehicle. So if 40% of workers in a city are
vehicle commuters according to the Census, then we compute commuter wage as the average wage within the
top 40% of the nss wage distribution in that city.
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(5 usd) in Bhavnagar, a city with a low commute share and low commuter wages.43 Looking

across the city size distribution, we find an unweighted average of 1,472 inr per worker (21

usd) in the ten largest cities in India, versus 762 inr (11 usd) for the 10 smallest cities in

our sample, with most of the difference due to higher wages and higher commute shares in

larger cities.

Appendix K. A ring analysis of speed in Indian cities

Although our main findings of city-level correlations in Section 6 are generally stable across

a wide variety of specifications, they may be subject to bias due to omitted city-level

variables. We now use within-city variation in population, area, and roads to avoid this

problem and gain further insights about variation in speed.

Specifically, we divide each city in our sample into concentric rings. Among other

advantages, nearly all radial trips will pass through the same rings, regardless of route.

We apply the following transformation of equation (2), which uses the location of trips

within cities to estimate a speed index for each ring within each city:

logSi = αX ′i + ∑
r

Rrc(i) sharerc(i)(i) + εi , (k1)

where sharerc(i)(i) is the share of trip i which takes places within ring r of city c and Rrc is

a speed index for ring r of city c. We consider (up to) 5 rings around each city center: 0 to 3

kilometers, 3 to 5, 5 to 10, 10 to 15, and 15 and beyond. We compute each trip’s share in each

ring using information from driving directions. We estimate equation (k1) using as controls

log trip length, time of day and day of week indicators in a manner that is consistent with

our baseline index.

In a second step, we estimate the following regression:

R̂rc = κr + βc + αX ′rc + εi , (k2)

where κr is a ring fixed effect, βc is a city fixed effect, and Xrc is a vector of city-ring

explanatory variables. In our dataset, only land area, population, and roads are available

separately by city-ring. Two caveats must be kept in mind. First, we only consider rings

43Looking at interquartile ratios, these gains are 1.91 times larger at the 75
th percentile than at the 25

th

percentile of the city distribution of gains. This variation in gains is mostly driven by variations in wages
(interquartile ratio of 1.70) and commuter share (interquartile ratio of 1.48). Commute speed and distance
feature less cross-city variation (interquartile ratios of 1.28 and 1.26 respectively.)
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Table K.1: Correlates of city speed indices, rings analysis

(1) (2) (3) (4) (5) (6) (7) (8)
Base No Step 1 < 5 km < 3 km Base <5 km Peak Peak

Control <5 km

log ring population -0.080a -0.096a -0.072a -0.071a -0.075a -0.067a -0.088a -0.080a

(0.011) (0.013) (0.011) (0.011) (0.011) (0.011) (0.012) (0.011)
log ring area 0.037b 0.054a 0.032b 0.032b 0.014 0.016 0.048a 0.043a

(0.015) (0.018) (0.014) (0.014) (0.015) (0.015) (0.016) (0.015)
asinh roads -0.0041 -0.0060c -0.0057b -0.0055b -0.0050 -0.0067b

(0.0029) (0.0035) (0.0028) (0.0027) (0.0031) (0.0029)
ring 2 0.088a 0.21a 0.065a 0.053a -0.17b -0.031 0.090a 0.062a

(0.017) (0.020) (0.016) (0.016) (0.077) (0.075) (0.018) (0.017)
ring 3 0.15a 0.33a 0.10a 0.082a -0.047 0.055 0.15a 0.10a

(0.022) (0.026) (0.021) (0.020) (0.079) (0.077) (0.023) (0.022)
ring 4 0.12a 0.31a 0.066a 0.049b -0.19b -0.10 0.13a 0.062b

(0.025) (0.030) (0.024) (0.024) (0.083) (0.081) (0.027) (0.025)
ring 5 0.097a 0.27a 0.039 0.022 -0.33a -0.22b 0.11a 0.031

(0.031) (0.038) (0.030) (0.030) (0.093) (0.090) (0.033) (0.032)
roads per ring N N N N Y Y N N

Observations 628 628 627 627 628 627 628 627
R2 0.44 0.68 0.34 0.31 0.47 0.37 0.47 0.36

Notes: OLS regressions with a city fixed effect and a ring fixed effect in all columns (180 cities in all
regressions). The dependent variable is the city-ring fixed effect estimated as per equation (K2).
Robust standard errors in parentheses. a, b, c: significant at 1%, 5%, 10%. Column 1 is our baseline
estimation for which city-ring effects are estimated as described in the text. Column 2 considers city
ring effects estimated with out trip controls in the first step. Columns 3 and 4 only consider trips with
a length of less than 5 and 3 kilometers respectively. Columns 5 and 6 estimate separate roads effects
for each ring. Columns 7 and 8 duplicate columns 1 and 3 but only consider peak-hour trips.

with 20,000 residents or more to avoid rings that are mostly empty. Second, we also expect

some equilibrium effects across rings as, for instance, population in nearby rings may affect

speed locally. Given the limited precision of our population data, detecting such effects may

be out of reach here.

We report results in table K.1. The coefficient on population is -0.08 in our baseline

specification, and similar in the rest of the table. We note that the population coefficients

estimated in table K.1 are only about half those estimated in table 5. This may be because

our measures of ring population are less precise. We also expect speed within ring to be
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determined by population in neighboring rings.44 Consistent with table 5, table K.1 also

reports small positive coefficients for area. On the other hand, the coefficient on roads is

generally negative. Although we do not report the details here, this negative coefficient is

driven mainly by the central ring when roads effects are allowed to vary by ring in columns

5 and 6. Finally, table K.1 also reports that speed is generally higher in outer rings, which

confirms results from section 4.

Appendix L. Transit

Table L.1 reports results analogous to table 2 columns 4 and 7 for the speed of transit trips.

The main text and Appendix A discuss the transit data in detail including important caveats

for interpreting these results, most notably that travel times are scheduled, not actual, and

only for formal transit services.

Columns 1–4, our preferred specifications, calculate transit speed using transit time and

driving distance (i.e. distance for the private vehicle route). Columns 5–8 alternatively

use transit distance (i.e. distance for the transit route), which is sometimes considerably

longer. We prefer driving distance because we believe that transit distance is likely to be

mismeasured. Also, to the extent that the purpose of this exercise is to compare transit with

driving, holding route constant allows us to focus attention on travel time.

Columns 1–2 (and 5–6) consider the full trip, ‘door-to-door’ (trip time), while columns

3–4 (and 7–8) exclude the portions of the trip walking to and from transit stops and waiting

for a vehicle, restricting attention to the time spent in the transit vehicle, typically a bus

(transit time).

Longer trips are consistently faster, as in private vehicles. Distance to the city center only

has a significant relationship with speed when using transit routes. The negative coefficient

is suggestive of higher frequency of service near the city center.

Route-specific variables are somewhat more difficult to assess in the context of transit,

because they are likely to be mismeasured both in columns 1–4, where we measure the

private vehicle route, and in columns 5–8 as noted above. Road types enter roughly as

expected, though somewhat more attenuated in columns 5–8, and right turns are associated

with slower bus travel. Perhaps counterintuitively, more establishments are associated with

44We experimented with specifications that also included population in neighboring rings. Estimated
coefficients are generally small and insignificant.
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Table L.1: Determinants of log trip speed for transit

(1) (2) (3) (4) (5) (6) (7) (8)
Distance Privately-owned vehicle route Transit route
Duration Trip time Transit time Trip time Transit time

log trip length 0.23a 0.074a 0.19a 0.052a 0.34a 0.33a 0.30a 0.31a

(0.014) (0.015) (0.016) (0.017) (0.010) (0.012) (0.012) (0.013)
log distance to center -0.020 0.0092 0.0033 0.030c -0.067a -0.061a -0.044a -0.040a

(0.012) (0.016) (0.015) (0.018) (0.0074) (0.0074) (0.0098) (0.0093)
Gross gradient up -1.35a -1.60a -0.50 -0.74b

(0.42) (0.42) (0.34) (0.36)
Gross gradient down -0.70b -0.53 -0.31 -0.14

(0.35) (0.33) (0.25) (0.20)
Gradient missing 0.0075 0.0069 0.0012 0.00060

(0.0076) (0.0072) (0.0036) (0.0031)
Share primary roads -0.088a -0.087a 0.018 0.019

(0.025) (0.026) (0.018) (0.018)
Share secondary roads -0.23a -0.22a 0.0028 0.012

(0.032) (0.032) (0.018) (0.016)
Share tertiary roads -0.35a -0.34a -0.051b -0.042c

(0.031) (0.031) (0.023) (0.022)
Share resid. roads -0.46a -0.46a -0.066a -0.067a

(0.028) (0.028) (0.022) (0.023)
Share other roads -0.34a -0.35a -0.072a -0.080a

(0.031) (0.035) (0.025) (0.027)
Share missing roads -0.16a -0.16a -0.051b -0.050b

(0.038) (0.038) (0.024) (0.025)
log # intersections 0.13a 0.12a -0.023a -0.037a

(0.014) (0.015) (0.0084) (0.0084)
arsinh # right turns -0.0064 -0.013c -0.032a -0.038a

(0.0065) (0.0067) (0.0038) (0.0039)
arsinh # establishments 0.038a 0.036a 0.032a 0.031a

(0.011) (0.010) (0.0074) (0.0069)
Type: circumferential -0.22a -0.16a -0.23a -0.17a -0.067a -0.054a -0.076a -0.065a

(0.017) (0.016) (0.015) (0.015) (0.018) (0.017) (0.016) (0.015)
Type: gravity -0.12a -0.088a -0.13a -0.093a -0.033a -0.024b -0.038a -0.029a

(0.017) (0.017) (0.016) (0.016) (0.012) (0.011) (0.012) (0.011)
Type: amenity -0.11a -0.085a -0.12a -0.092a 0.011 0.011 0.0057 0.0039

(0.018) (0.019) (0.018) (0.018) (0.015) (0.014) (0.015) (0.014)

Observations 1,001,721 1,001,000 1,001,721 1,001,000 1,002,143 1,001,401 1,002,143 1,001,401
R2 0.39 0.47 0.36 0.43 0.59 0.60 0.56 0.58

Notes: 146 cities in each column. OLS regressions with weather controls and city, weekday, and time
of day (for each 30 minute period) indicators using Intents weights. The transit index in columns to 4
uses distance from an analogous trip using a privately-owned vehicle. Transit distance is used in
columns 5 to 8. The transit index in columns 1, 2, 5, and 6 uses total trip time. Time in transit is used
in columns 3, 4, 7, and 8. Robust standard errors in parentheses. a, b, c: significant at 1%, 5%, 10%.
Sample sizes for columns 2 and 6 apply to columns 2–5 and 6–7, respectively. Share of road classes
are measured as a function of trip length. Motorways are the reference category. The reference
category for trip type is radial trips. Weather indicators for rain (yes, no, missing), thunderstorms
(yes, no, missing), wind speed (16 indicator variables), humidity (15 indicator variables), and
temperature (5 indicator variables).
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Table M.1: Trip statistics for US cities

percentile:
Mean St. dev. 1 10 25 50 75 90 99

Panel A: Sample: all trip instances (N=52,158,502)
Speed 40.6 14.5 17.2 25.1 30.4 37.4 47.7 62.1 83.1
Duration 11.3 8.8 2.6 4.3 5.9 8.7 13.7 20.9 45.6
Duration (no traffic) 10.0 7.0 2.4 4.0 5.4 7.9 12.3 18.5 35.8
Trip length 8.6 9.5 1.4 2.1 3.1 5.2 10.3 19.1 47.0
Effective length 6.0 7.2 1.0 1.4 2.0 3.4 6.9 14.6 35.6

Panel B: Sample: all cities (N=139)
Mean speed (distance weighted) 44.5 5.0 32.8 37.3 41.1 44.4 48.0 51.1 56.7
Mean speed 40.5 3.2 32.0 35.6 38.6 41.0 42.7 44.4 47.0
Mean duration 10.1 2.5 6.3 7.6 8.3 9.6 11.4 12.5 20.4
Mean duration (no traffic) 9.0 2.0 5.7 6.8 7.6 8.6 10.2 11.3 16.4
Mean trip length 7.5 2.4 3.8 5.1 5.7 7.2 8.9 10.5 16.6
Mean effective length 5.2 1.7 2.6 3.5 4.0 5.0 6.1 7.4 12.3

Note: Durations are in minutes, lengths in kilometers; and speeds in kilometers per hour.

faster travel, even when limiting to transit time. More intersections are associated with

slower travel when considering transit routes (but faster travel when considering private

vehicle routes.) Finally, as noted in the main text, there are large differences between

trip types. Most notably, circumferential trips are considerably slower than radial trips,

consistent with transit networks being even more radially oriented than road networks.

Appendix M. US results

Tables M.1–M.4 report us analogs to tables 1, 2, 4 and 5. Table M.1 reports summary statistics

for the us. At over 40 kilometers per hour on average, speeds are 70% higher than in our

India sample. Only a small part of this gap is due to longer trips across spatially larger

cities. us trips are 30% longer on average. Even with a large 20% elasticity of trip speed to

trip length, differences in trip lengths would only cause us trips to be 5% faster than Indian

trips. Trips are also comparably circuitous, with trip length exceeding effective (haversine)

length by about 45% in both countries.

Table M.2 reports trip level regressions. While results are generally quite similar to India,

we note several differences here. Trip length and city and time of day effects explain even

more of the variation across trips in the us than in India. At about 0.3, the log trip length
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coefficient is 25–50% larger in the us. This is consistent with fast road classes, especially

highways, which are more useful on longer trips, being more prevalent in the us. American

highways also have a greater speed advantage over smaller roads. Downhill travel is faster

in the us, unlike in India. Intersections slow us travel more, while business establishments

and turns against traffic (left in the us) slow it less than in India.

Table M.3 shows that like in India, uncongested speed explains more variation across us

cities than congestion. Unlike in India, this remains true even when restricting attention

to high peak trips and the largest cities: in all ten samples shown, the variance share of

uncongested speed is more than twice that of the congestion factor. The most notable

difference is that the covariance term is considerably larger in magnitude in the us, at around

-0.2 in nearly all samples. While cities with more congestion are slower in the absence of

traffic in both countries, this correlation is stronger in the us. One possible explanation is

that in both countries, features like shorter blocks and red lights slow down uncongested

travel, and these features are more common in congested cities (e.g. in large and dense

cities). However, there are more sources of variation across Indian cities, like paving quality,

that are relatively uniform across American cities, diluting this correlation in India relative

to the us.

Table M.4 reports correlates of city speed, uncongested speed and congestion, analogous

to table 5. The main text notes that results for India and the us are generally similar and

discusses three key differences between the two countries.
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Table M.2: Determinants of log trip speed in the US

(1) (2) (3) (4) (5) (6) (7) (8)

log trip length 0.33a 0.32a 0.30a 0.30a 0.30a 0.22a 0.30a 0.33a

(0.0061) (0.0061) (0.0062) (0.0062) (0.0059) (0.0058) (0.0036) (0.0033)
log distance to center 0.075a 0.077a 0.080a 0.094a 0.077a 0.065a

(0.0081) (0.0085) (0.0089) (0.0091) (0.0080) (0.0075)
Gross gradient up -0.42c -0.24b -0.48a

(0.21) (0.12) (0.16)
Gross gradient down 0.55 0.40 0.49c

(0.33) (0.26) (0.26)
Share primary roads -0.29a -0.26a -0.23a

(0.0077) (0.0092) (0.0094)
Share secondary roads -0.29a -0.25a -0.24a

(0.0088) (0.012) (0.011)
Share tertiary roads -0.28a -0.25a -0.26a

(0.0080) (0.0073) (0.0079)
Share resid. roads -0.36a -0.30a -0.31a

(0.0087) (0.0095) (0.0095)
Share other roads -0.36a -0.35a -0.37a

(0.025) (0.016) (0.013)
Share missing roads -0.28a -0.30a -0.30a

(0.0091) (0.0095) (0.011)
log # intersections -0.10a -0.089a

(0.0062) (0.0057)
arsinh # left turns -0.055a -0.055a

(0.0015) (0.0013)
arsinh # establishments -0.043a

(0.0013)
Type: circumferential 0.016 0.022c -0.036a -0.035a -0.031a 0.0056 0.011a -0.0081b

(0.013) (0.013) (0.0082) (0.0081) (0.0073) (0.0044) (0.0040) (0.0037)
Type: gravity 0.070a 0.076a -0.00066 0.00056 0.0032 0.025a 0.027a 0.010a

(0.011) (0.011) (0.0041) (0.0042) (0.0044) (0.0036) (0.0033) (0.0029)
Type: amenity 0.032b 0.038a -0.037a -0.038a -0.037a -0.011a -0.0071b -0.0026

(0.013) (0.013) (0.0056) (0.0056) (0.0054) (0.0037) (0.0030) (0.0030)
City effect Y Y Y Y Y Y Y Y
Day effect Y wkday wkday wkday wkday wkday wkday wkday
Time effect Y Y Y Y Y Y Y Y
Weight N N N intents NHTS NHTS NHTS NHTS
Weather N N Y Y Y Y Y Y

Observations 52,158,502 37,926,251 - - - - 37,804,021 -
R2 0.66 0.65 0.67 0.67 0.65 0.70 0.72 0.74

Notes: 180 cities in each column. OLS regressions with city, day, and time of day (for each 30 minute
period) indicators. Log speed is the dependent variable in all columns. Robust standard errors in
parentheses. a, b, c: significant at 1%, 5%, 10%. Sample sizes for columns 2 and 6 apply to columns
2–5 and 6–7, respectively. Share of road classes are measured as a function of trip length. Motorways
are the reference category. The reference category for trip type is radial trips. Weather indicators for
rain (yes, no, missing), thunderstorms (yes, no, missing), wind speed (16 indicator variables),
humidity (15 indicator variables), and temperature (5 indicator variables).
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Table M.3: Variance decompositions of our baseline speed index for the US

Sample Cities All trips High peak trips

Uncongested Congestion Covariance Uncongested Congestion Covariance
speed factor speed factor

All 139 0.529 0.097 -0.187 0.389 0.179 -0.216
Smallest 50% 69 0.661 0.072 -0.134 0.455 0.188 -0.178
Largest 50% 70 0.496 0.112 -0.196 0.383 0.190 -0.214
Largest 25% 35 0.457 0.125 -0.209 0.382 0.183 -0.217
Largest 10% 14 0.479 0.116 -0.203 0.381 0.176 -0.221
Note: High peak hours are 4-5:30 PM.

Table M.4: Correlates of city indices for the US

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Dependent variable Speed index Uncongested speed Congestion factor

log population -0.11a -0.13a -0.11a -0.074a -0.093a -0.078a 0.038a 0.041a 0.037a

(0.025) (0.025) (0.024) (0.020) (0.020) (0.019) (0.0070) (0.0068) (0.0065)
log area 0.072a 0.042c 0.028 0.045b 0.018 0.0091 -0.027a -0.024a -0.019a

(0.026) (0.025) (0.023) (0.021) (0.021) (0.019) (0.0072) (0.0069) (0.0065)
Elevation variance 0.0012 0.00097 0.00089 0.00034 0.00016 0.000083 -0.00086 -0.00080 -0.00080

(0.0025) (0.0022) (0.0026) (0.0019) (0.0017) (0.0018) (0.0011) (0.0011) (0.0012)
Water length -0.045a -0.038a -0.042a -0.028a -0.023b -0.026a 0.016a 0.015a 0.015a

(0.011) (0.014) (0.013) (0.0087) (0.010) (0.0095) (0.0034) (0.0042) (0.0041)
log major roads 0.049b 0.049b 0.043b 0.042b -0.0060 -0.0064

(0.021) (0.020) (0.018) (0.016) (0.0062) (0.0062)
Network 0.13a 0.089a 0.084a 0.045b -0.046a -0.043a

(0.027) (0.028) (0.021) (0.022) (0.0078) (0.0081)
Earnings 0.058 0.0058 -0.052b

(0.083) (0.067) (0.021)
Earnings2 -0.016 -0.0070 0.0094a

(0.014) (0.011) (0.0035)
Observations 139 139 139 139 139 139 139 139 139
R2 0.59 0.66 0.69 0.53 0.59 0.63 0.59 0.68 0.69

Notes: OLS regressions with a constant in all columns. The dependent variable of columns 1, 2, and 3
is the city fixed effect estimated in the specification of column 5 of table M.2. The dependent variable
of columns 4, 5, and 6 is the city fixed effect of an analogous regression using uncongested speed as
dependent variable. The dependent variable of columns 7, 8, and 9 is the city fixed effect of an
analogous regression using the congestion factor as dependent variable. Robust standard errors in
parentheses. a, b, c: significant at 1%, 5%, 10%. Log population is constructed using gridded
WorldPop data. Elevation variance, water length, log major roads, and the network shape variable
are as in table 5. Earnings (per capita) are computed using household income (measured in tens of
thousands of dollars) and average household size from the 2015-2019 American Community Survey.
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