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1. Introduction

The average us driver spent about 72 minutes driving per day in 2008; the average

household devoted nearly 9,000 dollars or about 18% of its expenditure to transportation,

95% of which went to buying, maintaining, or operating a private vehicle; in a typical

year, the us spends about 150 billion dollars on road construction and maintenance; and

the value of capital stock associated with road transportation in the us tops 7 trillion

dollars (us bts, 2013). In short, household road transportation is economically important.

The problem of understanding household transportation behavior is also conceptually

difficult. Road transportation allows households to get to work, buy consumption goods,

and enjoy leisure. Travel may also have independent consumption value. For households,

the transportation problem involves decisions about the number, purpose, destinations,

mode and the time of departure for their trips. These decisions in turn affect the amount

and quality of household leisure, consumption of housing, choice of jobs, retail stores,

amenities, and friends.

Underlying all of these choices is a road travel technology that governs the relationship

between resources directed to the provision of transportation and road travel. We esti-

mate this relationship. As we will see, the relationship between aggregate city travel time,

road infrastructure and speed is formally equivalent to a production function for travel.

Therefore, it implies marginal and average cost curves and, together with information

about travel demand, describes the equilibrium provision of road travel in cities. This

allows us to evaluate the welfare implications of counterfactual infrastructure policies

and to arrive at estimates of the deadweight loss of congestion.

We estimate that the deadweight loss from congestion is about 30 billion dollars per

year. We find that the high costs of expanding the roadway implies larger welfare

gains from managing demand for travel than from expanding supply. In particular, our

estimates suggest that a gasoline tax of about 60 cents to 1.6 dollars per gallon would

be a welfare improving response to traffic congestion. These are precisely the sorts of
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calculations that economists have sought since Vickrey’s pioneering characterization of

traffic congestion (Vickrey, 1963).

The description of travel provision above implicitly assumes a scalar ‘price’ for travel.

Reality is more complicated. Our data indicate that the speed of trips increases systemat-

ically with their distance. That is, cities do not offer a scalar cost of travel, but a menu of

unit travel costs that vary with the distance of the trip to be undertaken. Given this, our

exercise requires an important preliminary step. We must estimate the menu of speed and

distance combinations on offer in each city and use this menu to calculate a scalar speed

index to describe the cost of travel in a city. This calculation is analogous to the calculation

of more conventional price indices, and our speed index describes the cost of road travel

in a city in exactly the same sense that a city specific price index would describe the price

of goods.

Complicating our exercise further, we expect individual drivers to adjust their behavior

in response to the menu of trip distance and speed combinations they face. Estimating a

city’s speed-distance menu requires an econometric response to this simultaneity prob-

lem. Our econometric model explicitly accounts for this simultaneity problem. We exploit

demand variation arising from differences in trip distances across trips made for different

purposes to identify the supply relationship. Our results suggest that this simultaneity

problem is both economically and statistically important.

In addition to its importance to our subsequent investigation of the technology of travel

provision, our speed index is of independent interest as a measure of city level the cost of

travel. In particular, it provides an alternative to the Texas Transportation Institute’s (tti)

widely cited congestion index (Schrank and Lomax, 2009, Schrank, Lomax, and Turner,

2010). However, unlike the tti index, our index is grounded in economic theory and

hence can be more easily interpreted. We find that Miami is the slowest city in the us and

that it is 28% slower than Louisville, the fastest city in our sample.

Our investigation of the relationship between our speed index, aggregate vehicle travel

2



time and roads is in the spirit of standard analyses of factor productivity. Since the supply

of roads or aggregate travel time in a city may reflect unobserved determinants of speed,

we account for the probable endogeneity of inputs in this estimation. Our main findings

are that the elasticity of speed with respect to roads is about 0.09 whereas the elasticity of

speed with respect to aggregate vehicle travel time is -0.13. As we will show below, that

the sum of these two numbers is negative suggests that travel is produced with decreasing

returns to scale in us cities. We also find suggestive evidence that more centralised cities

are slower and that cities with more ring roads are faster.

Our investigation also addresses one of the central questions of transportation eco-

nomics, ‘what does the speed-flow curve look like?’ The current literature on this ques-

tion finds that speed decreases by between 50 to 60% in response to a doubling of the

number of vehicles on a road. Our methodology allows us to estimate a similar elasticity

describing the relationship between speed and the total time devoted to travel. Our

estimates for this elasticity are on the order of 15%.

This reflects two important methodological differences. First, our unit of study is a

city-year, while the existing literature typically considers particular roads or small areas

at particular times. By considering averages over large areas and long time periods, we

calculate a speed flow curve that implicitly reflects possible equilibrium responses to

traffic, such as changes in routes or the timing of trips. While segment specific estimates

are clearly of use, for the purpose of setting metropolitan or national transportation policy,

our city level estimates seem more relevant. Second, extant estimates of speed flow curve

have largely ignored the fact that observed travel behavior results from an equilibrium

that depends upon both supply and demand conditions.1 Our econometric strategy deals

1In their authoritative book, Small and Verhoef (2007) exposit the supply and demand
for travel separately, indeed, in different chapters. The fact that some variables may affect
both supply and demand is recognised but only discussed in the context of car purchases.
This absence of recognition of this simultaneity problem is all the more puzzling since
transportation theory makes heavy use of supply and demand frameworks which consti-
tute the starting point of all the economic calculations of the costs of congestion.
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with this problem explicitly.

Our results are also broadly relevant to urban economics. In the ubiquitous mono-

centric models unit travel cost is usually the fundamental parameter that determines the

location choices of households within cities, their consumption of housing, land use, and

the population size of cities. Our work provides better estimates for this fundamental

parameter, and how it varies with population and road infrastructure. We also refine the

results in Duranton and Turner (2011). Where Duranton and Turner (2011) is primarily

concerned with the relationship between the stock of roads in a city and the equilibrium

level of traffic, we are here more interested in uncovering the underlying structure of the

supply of travel. This, in turn, allows a more explicit evaluation of welfare.

Finally, while productivity in the manufacturing and service sectors is extensively

studied, in spite of its size, the transportation sector has received much less attention.2

Consistent with the large extant literature investigating productivity in firms (e.g., Syver-

son, 2011), we find that some cities are dramatically more efficient than others. This

suggests that there may be large gains if slow cities can emulate fast cities. As highlighted

above, we also find evidence of mild decreasing returns to scale in the production of road

transportation and of a low share for the fixed factor (roads). This is in contrast with

standard findings for the production of consumption goods.

2. Data

Our data describe aggregate travel behavior in a set of large us cities and the individual

driving trips taken by a sample of each city’s residents. Our cities are mainly us (Con-

solidated) Metropolitan Statistical Areas (msa) drawn to 1999 boundaries. Our analysis

relies heavily on household survey data. To ensure that we observe a sufficiently large

2Public transportation is an exception. Following Meyer, Kain, and Wohl’s (1965)
classic work, the estimation of the productivity of public transportation providers is a
standard exercise (see Small and Verhoef, 2007, for a review).
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number of households in each msa, in most of our work we consider a sample of the 100

largest msas according to their census population in 2010. When our analysis requires a

large sample of households in each city, we restrict attention to the 50 largest msas.

Data on individual travel behavior come from the 1995-1996 National Personal Trans-

portation Survey and the 2001-2002 and 2008-2009 National Household Transportation

Surveys. We to refer these surveys as the 1995, 2001 and 2008 nhts. Each of the nhts

surveys reports household and individual demographics for a nationally representative

sample of households.3 More importantly, the ‘travel day file’ of each nhts survey

codifies a travel diary kept by every member of each sampled household. For each adult

member of participating households we observe the distance, duration, mode, purpose,

and start time for each trip taken on a randomly assigned travel day. See Online Appendix

A for further details. We eliminate trips entered by non-drivers in order to focus our

investigation on the movement of vehicles rather than the movement of people. In our

sample of 100 msas, the nhts describes 419,331 trips, 102,462 drivers and 71,287 house-

holds in 2008; 168,683 trips, 40,333 drivers and 27,574 households in 2001; and 152,512

trips, 33,860 drivers and 22,592 households in 1995.

We aggregate to describe travel behavior at the msa level. To estimate msa vehicle

kilometers traveled (vkt) and vehicle time traveled (vtt), we sum the time and distance

of each trip over all of an individual’s trips. We then compute the average distance and

time driven by an individual in each msa. We multiply this individual average by msa

adult population (from the us Census) to obtain total msa vkt and vtt.

Our data on msa road infrastructure are from the 1995, 1996, 2001, 2002, and 2008

Highway Performance and Monitoring System (hpms) Universe and Sample data. The us

federal government administers the hpms through the Federal Highway Administration

in the Department of Transportation. This annual survey, which is used for planning pur-

poses and to apportion federal highway funding, collects data about the entire interstate

3The sample may not be representative for smallers msas with fewer observations, but
we control for individual and trip characteristics.
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highway system (hpms Universe data) and a large sample of other roads in urbanized

areas (hpms Sample data).

The hpms Universe data describe every segment of interstate highway (ih) and allow

us to calculate the number of lane kilometers of ih in each msa for each nhts year. To

calculate lane kilometers of major urban roads (mru) in the urbanized parts of an msa,

we sum lane kilometers for four classes of roads reported in the hpms Sample data;

‘collector’, ‘minor arterial’, ‘principal arterial’ and ‘other highway’. We omit a residual

class, ‘local roads’ because they are not systematically reported. To ensure that the

resulting measures of road infrastructure are comparable to the nhts surveys, which are

collected over two years, we average each of the hpms variables over the two relevant

nhts sampling years.

Table 1 contains summary statistics for our main variables in the 100 largest msas.

Means and standard deviations for trip-level variables are reported in Panel a. Trip

distance and trip duration increase from 1995 to 2001, from 12.5 to 13.2 km and from

15.1 to 17.6 minutes. Some of the increase in average trip duration is accounted for by

a decrease in average trip speed (computed across trips) from 43 to 39 km/h. Average

trip duration, distance, and speed are very similar in 2001 and 2008. The average number

of trips decreases from 4.5 in 1995 to 4.1 in 2008. We note that 1995 nhts survey asks

respondents to report the time it took to get to their destination, while the 2001 and 2008

surveys ask respondents to report exact departure and arrival times. This slight difference

in wording may partly explain the observed decrease in speed between 1995 and 2001.4

We also note that driving is sensitive to the business cycle, another reason to be cautious

when comparing across years.

Panel b of table 1 reports means and standard deviations for msa-level aggregates.

4To support this conjecture we note that our results below show that the drop in speed
in 2001 is nearly entirely accounted by a small increase of slightly above 1 minute in the
cost of the first kilometer of each trip. All comparisons between the 1995 nhts and other
years are subject to this caveat.
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Average vkt and vtt grow from 1995 to 2008, by 20% for vkt and by 29% for vtt, with

much of the increase in vkt accounted for by the sample average msa population growth

of 10%. Lanes of interstate highway grow by 14% between 1995 and 2008 while lanes of

major urban roads grow by 40%. While msa boundaries are constant over time, urbanized

area boundaries are not, so that some of the growth in lane kilometers of major urban

roads reflects the expansion of urbanized areas.5

The nhts data report the purpose of each trip using 10 consistently defined categories

such as ‘to/from work’, ‘shopping’, or ‘medical/dental’. Table 2 shows the mean and

standard deviation of distance by trip purpose for the msas in our sample. There is sig-

nificant and persistent variation in average trip distance across trip purposes. Shopping

trips are shortest at about 8.2 km on average in 2008. Vacation trips are the longest and

average 25.6 km. We note that ‘vacation’ and ‘other’ trips occur infrequently in the data

and we sometimes exclude them from our analysis.

Figure 1 plots log distance and log (inverse) speed for two groups of trips in Chicago

in 2008. The triangles represent commute trips and the circles represent trips taken for

one of two other purposes, school/church or medical/dental. It is clear from the figure

that for both groups, speed is higher for longer trips. In fact, this relationship between

speed and trip distance is one of the most important features of our data. Consistent

with sample averages reported in table 2, for Chicago in 2008 commute trips are about

twice as long as the other class of trips described in figure 1 (20.3 km for commutes,

9.0 km for school/church trips, and 12.6 km for medical/dental trips). The figure also

represents two trend lines: linear and 5th-order polynomial. The high-order polynomial

stays remarkably close to the linear trend, deviating only for very short trips that account

5Schrank and Lomax (2007) argue that vkt grows more quickly than road capacity.
While our data confirm this for Interstate Highways, this is not the case for major urban
roads. Besides the issues of boundary changes, we also note that our nhts based travel
estimates capture more travel than do the hpms based estimates on which Schrank and
Lomax (2007) is based. See Duranton and Turner (2011) for a more extensive discussion
of the differences between hpms and nhts data.
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for a small fraction of total travel. We see a similar pattern in other cities.

In addition to the nhts and hpms, we exploit several other sources of msa level data as

explanatory variables or as instrumental variables. Specifically, in our investigation of the

determinants of msa driving speed, we consider a number of geographical characteristics

of cities: ruggedness, elevation range, and cooling and heating degree days. We also de-

velop novel variables to measure urban form and the shape of the road network in cities.

Finally, we use variables describing historical transportation networks (1947 interstate

highway plan, 1898 railroads, and old exploration routes of the continent dating back

to 1528) as instruments for the modern road network. Details about these variables are

available in Online Appendix A and in Duranton and Turner (2011).

3. A theory of speed and the supply of travel

3.1 A city level model of the equilibrium provision of VKT

We begin by defining a production function for vehicle kilometers travelled. Let i index

our sample of cities, Ri measure city i’s stock of roads, vtti be aggregate vehicle travel

time for the city, Xi be a set of other city characteristics and let νi be an error term. With

this notation in place, we can define

log vkti = α log Ri + (1− θ) log vtti + Xiφ + νi . (1)

This is a standard Cobb-Douglas production function: vehicle kilometers traveled is our

measure of output; roads and vehicle time traveled are factors of production; α is the share

of roads in the production of travel; 1− θ is the share of vehicle travel time; and finally,

Xiφ + νi is total factor productivity, the ability of a city to move its residents conditional

on its stock of roads and aggregate time spent in cars. Some of the determinants of that

productivity may be observed and included in Xi. Other determinants are unobserved

and included in the residual νi.
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Vehicle kilometers traveled is equal to vehicle time traveled multiplied by speed, S:

vkt ≡ vtt × S. Using this expression, we can rewrite equation (1) as a regression of

speed on roads and vehicle travel time,

log Si = α log Ri − θ log vtti + Xiφ + νi . (2)

Although equation (1) is equivalent to the travel production equation (2), we prefer to

focus on equation (2) in the second of our two main empirical exercises for a number

of reasons. First, the dependent variable, Si – an index describing the speed of travel

in an msa, is a measure of travel efficiency that is easier to interpret than city aggregate

vkt. Second, the exact definition of Si is non-trivial as we discuss below. More generally,

focusing on speed as dependent variable will make our discussion of identification issues

clearer. Third, equation (2) maps more directly into our welfare analysis.

For later reference, note that we can determine the nature of returns to scale in the

provision of automobile transportation from the production function (1) and estimates

of α and θ. In particular, α − θ is a measure of returns to scale and if α < θ there are

decreasing returns to scale in the production of vkt.

From equation (2) we can easily derive average and marginal cost curves for vkt in a

city. To proceed, define − log Ωi ≡ α log Ri + Xiφ + νi. Substituting into (2), rearranging

and suppressing the i subscript for legibility gives,

C ≡ 1/S = Ω vtt
θ . (3)

Equation (3) gives the average cost of a kilometer of travel as a function of msa aggregate

travel time. Using the fact that vtt = vkt/S = vkt× C and substituting into equation

(3) implies,

C = AC(vkt) = Ω
1

1−θ vkt

θ
1−θ . (4)

Roads are congestible and, in an equilibrium where access to the roads is not priced,

drivers do not account for the costs their presence on the roads imposes on their fellow
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drivers. Hence, Equation (4) is an aggregate inverse supply curve for automobile travel

in an msa as all drivers experience the prevailing average time cost of travel. Multiplying

the average cost of travel in equation (4) by vkt and differentiating gives the marginal

time cost of travel

MC(vkt) =
C

1− θ
. (5)

This marginal cost function reflects the private cost of a marginal kilometer of travel

and also the extent to which this marginal kilometer slows down other drivers. That

is, this marginal cost curve reflects the full social cost of travel and congestion. Thus,

from regression equation (1) we derive the marginal and average cost curves for vkt.

Turning to the demand for vkt, we define it as vkt = ΓC−σ, where Γ is a constant and

σ is the price elasticity of the demand for vkt. We rearrange this expression to write it as

an inverse demand curve,

C = Γ
1
σ vkt

− 1
σ . (6)

Following Vickrey (1963), figure 2 illustrates a simple partial equilibrium model of

the provision of automobile travel. The vertical axis of this figure describes the cost of

travel in minutes per kilometer, the inverse of speed. The horizontal axis describes vehicle

kilometers travelled per year in the city. Equilibrium travel, vkt
eq
1 , is determined by the

intersection of demand and average cost, AC1. The optimal level of travel, vkt
opt
1 , is

determined by the intersection of marginal cost, MC1, and demand. The deadweight

loss in equilibrium is given by the hatched region with vertices A, B, and C. This is

the economic cost of excess equilibrium congestion. The optimal congestion tax is given

by the height of the segment AH. With a tax of |AH| per kilometer, we shift up the

average cost curve AC1 so that the intersection of AC1(vkt
opt
1 ) + |AH| is equal to the

demand at vkt
opt
1 . To calculate this tax, we must evaluate the difference between supply

and marginal cost at optimal vkt.

Equating average cost (4) and demand (6) we can solve for equilibrium vkt. Optimal

vkt results from equilibrating demand (6) and marginal cost (5). In Online Appendix B,
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we derive expressions for equilibrium and optimal travel as a function of parameters. In

the same appendix, we also derive two expressions that will facilitate the welfare and

policy analysis presented later.

The first of these is,

∆ =

[(
1− (1− θ)

σ
1−θ(1−σ)

)
− σ

σ− 1

(
1− (1− θ)

(σ−1)(1−θ)
1−θ(1−σ)

)]
. (7)

This expression gives the deadweight loss from congestion in a particular city as a propor-

tion of the total travel time. It depends on just two parameters, the supply and demand

elasticities, θ and σ. The second is an expression for τ∗, the optimal congestion tax as a

function of parameters and observed quantities,

τ∗ = θ(1− θ)
σθ

1−θ(1−σ)
−1 vtt

eq

vkt
eq (8)

Note that the units of the tax in this calculation are minutes per kilometer. We will

ultimately multiply by a cost of time to convert to cents per kilometer.

3.2 A model of individual travel behavior and city level trip length supply schedules

The preceding analysis describes the behavior of city level aggregates, including a city

level index of the speed of travel. Such an aggregate measure of travel speed must derive

from individual trips. However, ‘the speed of travel in a city’ is not well defined at the

trip level. Cities do not offer a single speed of travel. They offer a menu of feasible speed

and trip distance combinations. Therefore, we now turn to the problem of measuring the

speed of travel in a city.

To describe a city’s ability to supply road travel we will eventually calculate a speed

index analogous to a Laspeyres price index. This index will indicate the time premium

required to complete a standard bundle of trips in a given city relative to an average city.

Before we compute this index, we need to estimate the menu of feasible speed and trip

distance combinations in each city.
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More specifically, we need to estimate the time cost of travel per unit distance for any

trip of a given distance in each city. Although this is again a supply relationship that

relates the time cost of travel to vehicle kilometers traveled, these quantities differ from

those we discussed in the context of figure 2. We are here concerned with the behavior of

an individual in a given city choosing how far to drive to accomplish a particular errand,

taking as given the behavior of all other drivers and all other city level characteristics.

Our unit of observation is a trip, k, made by a particular driver, j, in a particular city,

i. Let xijk denote distance for trip ijk in kilometers, and cijk the log time cost of the trip

in minutes per kilometer. Note that c, the time cost of distance, is simply the inverse

of speed. Let τijk ∈ {1,..T} index the possible purposes for trip ijk and let χτ
ijk be an

indicator variable that is one for trips of type τ and zero otherwise.6 We are primarily

concerned with variation in trip speed and distance within a city and therefore often omit

the i subscript to increase legibility.

As figure 1 shows, the relationship between speed and distance is an important feature

of our data. The unit price of travel is declining in trip length. Given this, define the

inverse trip length supply schedule to be

cs
jk = x−γ

jk exp(c + δj + εjk). (9)

Here, the locus cs
jk describes technically feasible prices and trip lengths. It reports the

average price in minutes per kilometer, on a particular trip of length x. The parameter

δj measures drivers’ abilities to drive fast on all trips and reflects characteristics such as

the driver’s skillfulness or the proximity of his or her home to a freeway. The parameter

εjk measures a driver’s ability to drive fast on a particular trip and reflects events such

as stormy weather or road construction. The parameter c is the (log) time cost of a one

kilometer trip when δj = 0 and εjk = 0. Finally, γ is the price elasticity of the supply of

distance.
6N.B.: We here use τ to index trip purposes, not as a tax, as in the preceding section.
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The trip length supply schedules in equation (9) are central to our analysis. They allow

us to calculate the total time required to complete standardized trip bundles, components

of our speed index. Estimating these curves, the parameters c and γ in particular, is the

goal of our first empirical exercise.

Let cd
jk be driver j’s willingness to pay, in minutes per unit distance, for trip k. Define

the driver’s willingness to pay schedule as,

cd
jk = x−β

jk exp(ΣT
τ=1Aτχτ

jk + ηj + µjk), (10)

Since χτ
jk is a trip purpose indicator for trip k, the summation ΣT

τ=1Aτχτ
jk describes a trip

purpose specific constant and allows the intercept of the driver’s willingness to pay curve

to vary with trip purpose. Aτ measures the log willingness to pay for a one kilometer trip

of type τ when ηj = 0 and µjk = 0. With β > 0, the unit cost of distance falls with

trip length for all trip purposes. Hence, drivers are willing to drive longer distances

to their preferred restaurant or supermarket as the time cost per unit of distance falls.

Similarly, they may also choose to reside in more remote locations. The ‘slope’ parameter

β is the price elasticity of the willingness to pay for trip distance and determines the rate of

decline in a driver’s log willingness to pay for a kilometer as trip distance increases. The

parameter ηj describes a driver’s idiosyncratic willingness to give up time for distance

depending on his innate impatience or value of time. The parameter µjk reflects trip-

specific factors which affect willingness to give up time for distance, for example, how

busy a day the driver is having.

Since drivers recognize that their choice of distance affects the speed of travel, they

choose trip distance to satisfy

cd = MC(x) ≡ d(x cs)

dx
= (1− γ)cs. (11)

That is, the marginal willingness to pay for trip distance equals the marginal cost of trip

distance. Note that despite affecting the unit price of distance with their choice of trip

length, drivers are still price takers in the sense that they take the trip length supply
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schedule as given. In particular, they do not recognize that their driving behavior may

contribute to congestion in the network and thus shift the whole supply schedule.

Figure 3 illustrates this equilibrium for the case when β > γ and cov[(ηj + µjk),(δj +

εjk)] > 0. The axes on this figure are identical to those of figure 1. In figure 3, cs
1

describes our supply relationship for a particular realization of ε. The marginal cost

curve associated with this average cost curve is MC1, a dashed line. Because we have

a logarithmic scale, the marginal cost curve is a vertical translation of the average cost

curve, rather than a rotation. cd
1 describes a driver’s demand schedule for a particular

realization of µ. An optimizing driver chooses trip distance, x1, to equalize marginal trip

cost with its marginal value. The resulting unit price of distance for this trip is c1, which

is determined by the average cost curve. The curves cs
2 and cd

2 reflect different draws of

ε and µ and give rise to different equilibrium trip distance and speed. Our data consist

of equilibrium pairs of speeds and distances, e.g., the points a and b: this is exactly what

is illustrated by figure 1. Our goal is to estimate the average cost functions, cs
1 and cs

2.

From the figure, it is clear that naively plotting the line of best fit for these equilibrium

pairs, the dotted line connecting points a and b, need not accomplish this objective. To

estimate average cost curves, we require variation in demand that is unrelated to variation

in supply.7

More formally, using equations (9) and (10) in (11), and taking (natural) logarithms we

arrive at the following system of equations,

log xjk = Dj + ΣT−1
τ=1 Ãτχτ

jk + ζ jk (12)

log cjk = c + δj − γ log xjk + εjk , (13)

where c is the observed equilibrium price, Dj ≡ log(1−γ)
γ−β + c

γ−β −
AT

γ−β +
δj−ηj
γ−β , Ãτ ≡

7This is a complicated figure because it portrays two common problems at the same
time. The first is the driver’s optimization problem, which is formally equivalent to the
problem of partial equilibrium with monopsony. The second is simultaneous equations
bias. Thus, this figure illustrates the problem of simultaneous equations bias in the
context of a monopsony equilibrium.
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AT−Aτ

γ−β , τ ∈ {1,..,T − 1}, and ζ jk ≡
εjk−µjk

γ−β . Note that the equilibrium price is cs, not cd,

since equation (11), requires the two quantities to diverge in equilibrium.

Inspection of equations (12) and (13) shows that Aτ, the willingness to pay for a trip

of type τ, χτ
jk, the dummy for the trip being of type τ, and ηj (a component of Dj)

the individual characteristics affecting the demand for trips of driver j, all appear in

the distance equation (12), but not in the speed equation (13). It follows that variables

measuring these quantities are candidate sources of exogenous variation in demand with

which to resolve our simultaneity problem.

In practice, it is hard to think of individual characteristics that affect the demand for

trips but not the ability to produce them. Educational attainment affects a driver’s oppor-

tunity cost of time and hence demand for trip distance, but may also affect driving skills

and thus the ability to drive at a high speed. This suggests that individual characteristics

are unlikely to provide good sources of exogenous variation in demand.

Trip type indicators are more defensible sources of variation with which to identify the

inverse supply curve described by equation (9). Trip type dummies occur explicitly in

equation (12) and not in equation (13), so the rationale for using them as an instrument is

transparent. Denote these instruments Zjk. As made clear by the discussion above, valid

instruments for trip distance must satisfy two conditions. First, they must predict trip

distance conditional on the other controls: cov(Zjk, xjk|.) 6= 0 (relevance). We demonstrate

that this condition holds below. Second, instruments must be uncorrelated with the error

term of equation (13): cov(Zjk, εjk|.) = 0 (exogeneity).

If trip type dummies are orthogonal to εjk then we are not more (or less) likely to

observe trips of type τ when such trips are particulary fast. In fact, we suspect that some

trips (e.g., ‘recreational’ trips, to take an example from the data) might be taken with

greater propensity when traffic conditions are good, i.e., when εjk is high. To understand

why such a correlation might arise, assume there are only two types of trip: to the gym

and to work. Also suppose that drivers stop going to the gym when there is more than
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10 centimeters of snow on the ground and stop going to work when there is more than 30

centimeters of snow (and traffic gets even slower). In this case, trips to the gym will be

positively correlated with the error term. This violates the exogeneity condition.

To circumvent this possible problem, we can restrict attention to trips which are not

discretionary such as trips ‘to and from work’, ‘work related business’, ‘school church’,

and ‘medical/dental’ trips.8 Adding controls reduces the role of unobserved determi-

nants of speed. In our case, we know trip characteristics like; month, day of week, and

time of day. If adding these controls does not cause big changes in our estimations it

suggests that our instruments are uncorrelated with εjk.

In addition to trip type dummies, we also rely on mean distance by trip type by city

as instruments. The rationale for this instrument is somewhat different from that for trip

type dummies and is described in Online Appendix C.

Apart from concerns about the validity of our instruments, we may worry about the

sorting of drivers. As we see in equation (13), the constant term in the speed equation

is the sum of the intercept of the inverse-supply curve c (the coefficient of interest), and

driver characteristics affecting supply δj. Since we only observe drivers driving in one

city, c and δj cannot be separately identified. Stated precisely, our concern is that fast

drivers, those with high δ’s, might systematically choose to locate in fast cities, those with

high c’s.

We have two responses to this problem. The first is to consider large areas, the largest

us consolidated statistical metropolitan areas (msas), as our unit of observation. As long

as the problematic sorting of drivers occurs at a smaller scale than our unit of observation,

it will not lead to systematic differences between drivers in one msa and another. Drivers

with a desire to drive fast can always locate close to highways in a less densely populated

part of nearly any large msa in the us. Much the same logic is widely used to identify

local peer group effects (e.g., Evans, Oates, and Schwab, 1992, for an early example). Our

8Actually, we only need to restrict attention to trips with the same level of discretion.
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second response to the sorting problem is to parameterize individual effects as a function

of observable driver characteristics. In particular, we expect that controls such as age,

income, gender, and education are correlated with individual unobservables. Since only

the residual εijk will be confounded with the intercept, we use our controls to reduce this

residual as much as possible.

3.3 Calculation of the speed index

After estimating a ‘trip length supply schedule’ relating trip speed to trip length in each

city, we can now compute a speed index for each city.

Let cUS denote our estimates of c from a particular regression specification for all msas.

Let ci be a corresponding estimate for a particular msa, and let ∑jk be a sum over all

individuals j and trips k (i.e., the universe of all trips taken in the data). Then, suppressing

nhts trip weights and year indices, the speed index for city i is

Si =
Σjkxjk exp (cUS − γUS log xjk)

Σjkxjk exp (ci − γi log xjk)
. (14)

That is, we compute the time that it would take to realize all (weighted) us trip distances

in our data at the average estimated us speed relative to how much time it would take to

realize the same trips at the estimated speed of a given msa. Formally, this is the inverse

of a time cost index or equivalently, a speed index.9

The speed index defined in equation (14) is analogous to a Laspeyres price index in the

sense that we compare the speed of travel across us msas for the same (national) bundle

of trips. We also calculate a speed index on the basis of the trips that actually occur in an

msa. This alternative speed index is analogous to a Paasche price index.

Finally, recall that in our analysis of the determinants of speed, we examine the

relationship between our speed index and probable determinants of travel speed. In

9Formally, S is a scalar without units. However, we can easily interpret it as a speed.
An msa for where the national bundle of trips requires only half as much time the us

average speed has an index of 2 and is twice as fast as an average msa.
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particular, the extent and configuration of the road network, and the physical geography

and configuration of sample msas. By construction our index describes the cost of travel.

This allows us to abstract from the changes in the value of travel often associated with

changes in accessibility, although we allow for changes in the value of travel in our

welfare analysis.

4. Estimation of the city level supply schedules

Our goal is to understand the production of travel in cities. In this section we estimate

city level supply schedules. In the following section we use these supply schedules to

calculate a speed index for each city. Finally, we use this speed index, together with city

level measures of vkt and infrastructure to estimate the aggregate supply relationship

described by equation (2).

We now turn to the estimation of city level speed-distance schedules. We start by

estimating variants of the equation

log cijk = ci + Yj δ− γi log xjk + Tjk ξ + εijk . (15)

This equation differs from equation (13) in two regards. First, it includes a vector of

trip attributes, Tjk, not present in (13). These trip attributes control for variation in traffic

conditions by time of day, day of week, and month of year. Second, equation (15) includes

a vector of individual control variables Yj. This generalizes equation (13) which restricts

attention to individual fixed effects.

We estimate equation (15) using nhts trips by drivers residing in each of the msas

in our sample. For each msa, we thus estimate an intercept ci and a slope γi. Table 3

summarizes these results. In each panel, we report the mean values of the msa intercept

ci and the msa slope γi. For both variables, we also report the standard deviations of the

mean of these coefficients in parenthesis and the mean of their standard errors in squared

brackets. Table 3 reports results based on the 2008 nhts for trips by drivers in the 100
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largest msas. Appendix table A.1 replicates table 3 for samples based on the the 50 largest

msas for 2008, 2001 and 1995.

In column 1, we estimate equation (15) without driver or trip controls. The mean value

of ci for the 100 largest msas in 2008 appears in the first row of panel a. Its value of 1.412

implies just above 4 minutes for a trip of one kilometer.10 This is slightly less than 15

kilometers per hour. The second row of the same column reports the standard error of

the mean of the intercepts across msas. Its value of 0.094 implies an e0.094 ≈ 10% difference

in speed for a trip of one kilometer. The third row reports that the mean of the standard

error within msas is only 0.030. This suggests that the differences in intercepts across msas

reflect mostly true differences in speed, not sampling error.

The fourth row of panel a reports the average of the coefficients for log distance. In

column 1, its value of 0.426 implies that speed increases by about 20.426 ≈ 34% when trip

distance doubles. Of course, we cannot expect this relationship to scale up for extremely

long trips. However, 99% of the trips we observe are between zero and 83 kilometers and

this elasticity estimate applies in this range. The fifth row reports the average standard

deviation for these estimates of γ across msas. It equals 0.034. Since this is more than

twice as large as the mean standard error for γ within msas, 0.014, reported in the sixth

row, this probably reflects again true heterogeneity across msas and not sampling error.

In column 2, we augment the regression of column 1 with several controls for driver

characteristics; household income and its square, driver’s education and its square, age,

and dummies for males, blacks, and workers. We also include a quartic in departure

hour and a weekend dummy as trip controls. In column 3, we include more exhaustive

driver and trip controls. For drivers we include 17 dummies for household income, four

dummies for education, age, and dummies for males, blacks, hispanics, and workers. For

trips, we include 23 dummies for the hour of departure, 11 dummies for the month of

departure, and a dummy for trips taken during the weekend.

10Since this quantity is an exponential of an average of logs from which we omit the
errors, strictly speaking, it is not predicted speed.
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We constrain the effect of driver and trip characteristics to be the same for all msas. This

increases the efficiency of our estimations, increases the transparency of the speed indices

calculated below, and eases the calculation of these indices. Moreover, since regressions

with driver and trip characteristics give similar results to regressions with driver fixed

effects, it seems unlikely that this simplifying assumption is important to our estimates of

the speed-distance schedules.11

Because our explanatory variables are centered, we can directly compare estimates of

ci across columns 1, 2, and 3. Their means are within 0.023 of each other or less than

2% apart. We can also compare estimates of the distance elasticity of speed, γ, across

columns. These estimates are stable. The R2s for the different specifications are also stable.

The (adjusted) R2 associated with column 1 when estimating an intercept (c) and a slope

(γ) for each city in a single regression is 56.7%. Adding driver and trip controls in column

2 raises this R2 slightly, to 57.7%. The more exhaustive controls of column 3 also increase

the R2 slightly, this time to 57.8%. Controls for trip and driver characteristics do not affect

our estimation of the distance elasticity.

This does not imply that driver and trip characteristics do not affect speed. They do.

While we do not report these coefficients, several are interesting. Women are about 0.5%

slower than men. Age is more important. A year of age is associated with 0.3% slower

speed. Black drivers drive about 8% slower. Drivers with more education and drivers

with higher income are faster, although in both cases the relationship tapers off after a

threshold: drivers with a Bachelor degree are about 7% faster than workers with less

than high school; drivers from households with annual income around $60,000 are about

9% faster than drivers from the poorest households.12 Our findings on the effect of trip

11It would also be of interest to investigate whether the effect of driver and trip char-
acteristics vary across msas, e.g., to check if ‘peak’ hours differ in intensity and duration
across msas. However, given that our ultimate objective is an understanding of city level
determinants of speed, we leave such an investigation for future research.

12This might obviously be related to the state of their vehicles which we control for
indirectly with demographic characteristics.
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characteristics are unsurprising: weekend trips are about 4% faster than week-day trips;

trips departing during the morning peak are about 4% slower than trips in the middle of

the night; trips departing during the evening peak are about 10% slower than trips in the

middle of the night; there are small differences between months, Winter and Fall months

are about 1% faster than Spring and Summer months.

In column 4, we return to the specification of column 1 and introduce driver fixed

effects. The results for this column confirm that driver characteristics do not affect the

estimation of our parameters of interest. With driver fixed effects, the mean of both

intercepts and slopes are nearly unchanged from column 1.

Column 5 replicates the specification of column 2, but, to instrument for trip distance,

uses the mean log distance of other trips with the same purpose in the same msa. We

note that this estimation raises a technical issue. We want to estimate a separate intercept

and slope for each msa. This implies estimating a separate iv regression for each msa

so that we instrument trip distance in a city by only the instruments for this city instead

of the entire set of instruments. At the same time, we want to constrain the effect of

driver and trip characteristics to be the same everywhere to remain consistent with the

ols estimations of column 2. This calls for a two-step approach where the effects of driver

and trip characteristics on speed are estimated first from the cross-section of msas. We

then take these coefficients as given (i.e., treat them as constraints) when estimating a

separate tsls regression for each msa.

If drivers take longer trips when travel is faster, then ols estimates of γ are biased

upwards. Comparing the iv results in column 5 panel a with the corresponding ols

results in column 2 we see that, as expected, the iv estimates of γ are smaller than the

ols estimates. In column 5, the mean iv elasticity of speed with respect to distance is

0.356. The corresponding ols value from column 2 is 0.421. Although modest, this 20%

difference between the ols and iv estimates is statistically significant for a large majority

of cities. These elasticities imply that after controlling for simultaneity in the choice of
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trip distance and speed, speed increases by only about 20.360 ≈ 28% when trip distance

doubles as opposed to the 34% increase we observe in equilibrium speed.

We also observe that the estimates of c are lower with iv than ols. From figure 3, the

equilibrium relationship between the unit time cost of travel and trip distance is given by

the line passing through the points a and b. On the other hand, the supply relationship

is given by cs and has a smaller slope and intercept. This corresponds exactly to the

observed relationship between ols and iv estimates. Consistent with this, the iv results

of column 5 imply a speed of nearly 17 kilometers per hour for a trip of one kilometer.

This is about two kilometers per hour faster than is implied by the ols estimate of column

2 (recall that a smaller value of c implies a lower time cost of travel and hence a higher

speed).

A possible worry is that these results are driven by weak instruments. For the 50 largest

cities in 2009, the average first-stage F statistic for the excluded instrument is equal to 595.

There is nonetheless a lot of heterogeneity across cities. At one extreme, we have nearly

33,000 trips for Dallas and commutes are about twice as long as shopping trips. With

driver characteristics playing only a minor role, it is unsurprising that the F statistic is

above 3,000 in this msa. While no msa in the top 50 in 2008 has an F statistic below 10,

there is one below 20. This is Baton Rouge (la) for which we observe only about 800

trips. For 2001, one msa has an F statistic below 10 and three are below 20. For 1995,

the numbers are respectively 5 and 9. Ignoring msas for which the instrument is weak

makes no difference to our results. We also experimented with clustering our estimations

at the household level for each msa and with robust standard errors and this makes no

perceptible difference either.

In column 6, we replicate the iv estimations of column 5, but instrument for trip

distance using mean log distance for trips of the same type in the four msas with most

nearly the same population. The results are close to those of column 5. Mean log distance

for trips of the same purpose in msas with similar population is a marginally stronger
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instrument than mean log distance by trip purpose in the same msa because the instru-

ment is measured with more precision, being computed using more observations (i.e.,

trips from four msas instead of only one). As a result, no msa among the largest 50 has

an F test below 20 in 2008, only one in 2001, and five in 1995. For this reason and because

mean trip distance in other cities is arguably more likely to satisfy the exclusion restriction

we prefer the specification of column 6 and we use these regressions to compute our

benchmark speed index.

In column 7, we use seven trip purpose dummies as instruments. Despite the different

rationales for the validity of the instruments, this yields mean estimates close to those

of columns 5 and 6. In column 8, we restrict our sample of trips to less discretionary

trips: commutes, work-related trips, school and church, and medical/dental and use a

dummy for commutes and work-related trips as instrument. The slopes we estimate for

the inverse-supply curves are close to those from the other iv estimates. We note that the

mean intercept is lower than for previous iv estimations since less discretionary trip are

often taken at busier hours and tend to be slower.

Finally, in column 9 we return to the same instruments as in column 6 but apply them

to the fixed effect estimation of column 4. This is a very demanding estimation strategy

since the effect of distance on speed is identified within driver from the speed differences

between long work trips and shorter trips. We can see that the estimates of the slopes of

the inverse supply curves nonetheless remain close to previous iv estimations but have

larger standard errors.13 Appendix table A.1 replicates the table 3 for the 50 largest msas

for 2008, 2001 and 1995. The results are broadly similar.

To assess the robustness of our findings further, we perform a variety of estimations

using alternative samples and geography. The results are reported in table A.2 in Online

Appendix D. A first worry is that we may identify the speed-distance schedules mostly

13This is to some extent driven by weaker instruments. The mean F is less than half
relative to column 5 or 6. Among the largest 50 msas in 2009, one has an F below 10 and
5 are below 50. Among the largest 100 msas, 21 are below 10 and 30 are below 20.
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from long trips which are relatively rare. In addition, the variance for short trips is larger

as made clear by the data for Chicago represented in figure 1. To tackle these two issues,

we replicated the ols estimates of column 3 of table 3 and the iv estimates of column 5

of the same table excluding all trips in the top and bottom distance quartile in each city.

Although the iv estimates are imprecise, the average ols elasticity of speed with respect

to distance remains close to those based on the whole sample.

A second worry is that the trip distance instrument we use above may be affected by

the times at which people travel. These times of travel differ across types of trips. To

assess this potential problem, we again replicated our preferred ols and iv estimates of

table 3 restricting our sample to peak-hour trips. The ols and iv elasticities of the speed

of travel with respect to distance are very similar to those of table 3. The intercepts are

slightly lower given that travel is generally slower at peak hour. Related to this, one

may also worry that commutes, which are typically longer trips, may also differ in other

respects including for instance the direction of travel. To assess whether commutes affect

our results, we also performed separate estimations that restrict our sample to commuting

and work-related trips. The ols results are very close to those for all trips. The iv results

are less conclusive since the dramatic reduction in sample size when we only consider

commutes and work-related trips implies that iv regressions can be meaningfully esti-

mated for only the largest cities in 2008.

In addition, our estimations rely on (consolidated) metropolitan statistical areas. These

are geographically large units that will group, for instance, Baltimore with Washington

dc, Gary with Chicago, Fort Lauderdale with Miami, and Northern New Jersey with

New York City. While the congestion of Miami and New York City may spill over to

Fort Lauderdale or to Northern New Jersey, it is much less clear whether Baltimore and

Gary (in) are part of the same transportation equilibrium as Washington or Chicago. For

1995 and 2001, we only know household location for msas. For 2009, we have more

precision for household location and can re-estimate the speed-distance schedules for
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primary metropolitan statistical areas. As reported in table A.2, this makes virtually no

difference to our estimates of the average slopes and intercepts of the inverse supply

schedules.

As a final robustness check, we experiment with alternative functional forms. First,

we estimate polynomial regressions, and add non-linear terms of log trip distance to the

equation in column 1 of Table 3. The polynomial regressions only marginally improve the

fit of the regressions. The mean (non-adjusted) R2 computed across the 100 largest cities

in 2008 increases from 0.571 in the linear regression to 0.595 in the fifth-order polynomial

regression. While the coefficients associated with the non-linear terms are in most cases

statistically significant, they make little economic difference. The linear specification

implies an elasticity of speed with respect to trip distance of 0.417 in 2009. The fifth-order

polynomial specification implies an elasticity of 0.444 for a three-kilometer trip (at the first

decile of trip distance) and an elasticity of 0.325 for a much longer trip of 31 kilometers

(at the ninth decile of trip distance). In comparison, the largest corresponding elasticity

reported in the top panel of table 3 is 0.426 and the smallest is 0.342, so this range is not

large relative that associated with other variations in specification. As we report below,

we also experimented with local polynomial smoothing regressions and show that taking

these non-linearities into account makes close to no difference to our estimation of the

speed-distance schedules and the speed indices we derive from them.

In sum, we draw four conclusions from our estimations of the speed-distance sched-

ules. First, from the differences between our ols and iv estimates, there is evidence of the

simultaneous determination of speed and distance. This modestly affects our estimates

of the elasticity of speed with respect to distance. Second, different iv strategies yield

similar estimates for c and γ. Third, our estimates are robust to the inclusion of other

trip and driver controls. Fourth, our estimates are also robust to considering a different

subsamples of trips, departure time, and geographical units.
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5. Speed index

5.1 Calculation of speed indices

Table 4 reports our preferred speed index for the five fastest and five slowest of the largest

50 us msas. This index is based on our preferred estimate of equation (3) from column

6 of table 3, where we instrument for trip distance with mean distance for trips of the

same type in the four cities most nearly the same size. Appendix table A.3 reports the

corresponding information for all of the 50 largest msas.

For 2008, we find that the speed of driving in the slowest msa, Miami, is 28% lower

than in the fastest, Louisville. Despite its name, Grand Rapids is only the second fastest

msa. More generally, among the 10 slowest msas, we find the four largest (New York, Los

Angeles, Chicago, and Washington), another from the top 10 largest (Boston), four large

cities with a difficult geography (Miami, Seattle, New Orleans, and Pittsburgh) and one

city with famously stringent zoning regulations (Portland).

There are some changes in ranking between 1995 and 2008. The Spearman rank cor-

relation between the 2008 and 2001 ranking is 0.82 while that between the 2008 and 1995

ranking is 0.59. These correlations are high but far from perfect. In part at least, these

changes in rank reflect changes in city level fundamentals: in a regression of changes in

the speed index from 1995 to 2008 against population changes over the same period and

the 1995 value of the same index, we find a coefficient -0.078 (significant at 10%) for the 50

largest msas and -0.132 (significant at 5%) for the 100 largest msas. With this said, some

changes in ranking across years are probably due to sampling error.

5.2 Robustness checks

To assess the robustness of our preferred ranking, we compare it to alternative rankings

based on the same data but different aggregation methods to construct the speed index,

different estimation strategies, or different geography. The Texas Transportation Institute
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produces the best known and most widely reported indices of travel speed. Appendix

Appendix E investigates the differences between our index and the 2008 and 2009 tti

indices (Schrank and Lomax, 2009, Schrank et al., 2010).

The exact construction of our index does not matter. Our speed index compares how

much time it would take to complete all us trips at the average estimated us speed with

how much time it would take to complete all us trips at the estimated msa speed. As an

alternative, we can measure how much time it would take to complete all trips in an msa

at this msa’s speed relative to average us speed. This would be a Paasche index instead of

a Laspeyres index. This alternative index allows us to compare msas for the trips drivers

actually take in those cities. This is of particular importance when trips of different types

or different distances are easily substitutable. However, this alternative index is more

difficult to interpret since speed differences across msas can now be caused by both the

speed and composition of trips.

Empirically, allowing for differences in the composition of trips is not important. Using

our preferred estimation strategy and our sample of the 50 largest msas, the rank correla-

tion between our preferred (Laspeyres) ranking and the alternative (Paasche) index just

described is above 0.99 for 1995, 2001, and 2008. If we consider the 100 largest msas

the corresponding correlations are all above 0.96. These findings are not specific to our

choice of estimation. We find similarly high correlations for the Laspeyres and Paasche

rankings constructed from the output of ols estimation for column 2 of table 3 (i.e., the

ols estimation that corresponds to our preferred iv).

Next, we compare our preferred ranking, calculated from column 6 of table 3, with

alternative rankings calculated from other columns of the same table and with average

speed calculated directly from the data. Starting with the latter, the rank correlation

between our preferred ranking and one obtained based on msa average speed is 0.68

for 50 msas in 2008. The rank correlations between our preferred ranking and alternative

rankings obtained from the ols estimates of columns 1 to 3 of table 3 are between 0.89
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and 0.94 for 50 msas in 2008. For the fixed-effect estimation of column 4, the correlation

is slightly lower at 0.87. For the iv estimations of columns 5, 7, 8, and 9, the correlations

are 0.98, 0.97, 0.97, and 0.68, respectively. This last correlation is lower because it is based

on the noisier estimates of column 9 (our most demanding estimation, with driver fixed

effects in an iv regression). For 1995 and 2001, correlations across rankings are slightly

lower.14

We also experimented with nonparametric specifications of the speed-distance sched-

ules using local polynomial smoothing regressions.15 Comparing the ranking obtained

from this non-parametric estimation for the largest 50 msas in 2008 with that obtained

from the corresponding linear ols estimation of column 1 of table 3, the rank correlation

is 0.88. The rank correlations for 2001 and 1995 are even higher at 0.94 and 0.91. In other

words, a nonparametric specification generates a ranking of cities by speed that closely

matches what we derive from a linear specification.

We draw a number of conclusions from these correlations. First, the relatively low

correlation between our preferred ranking and raw measures of speed underscores the

importance of controlling for trip distance. Second, the high correlations between the

indices derived from our various iv estimations suggest that our preferred ranking is

not sensitive to the details of our instrumentation strategy provided the relationship

between speed and distance is precisely estimated. Third, the relatively high correlations

between our preferred ranking and the rankings derived from ols estimates suggest that

controlling econometrically for the simultaneous determination of speed and distance

14In our sample of the 50 largest msas, the rank correlation between our preferred
ranking and the alternative ranking obtained from the ols estimates of column 2 of table
3 is 0.85 in 2001 and 0.79 in 1995 instead of 0.94 in 2008. For the 100 largest msas, the
rank correlation between our preferred ranking and the same alternative based on ols

estimates is 0.81 in 2008. More generally, correlations drop when we use 100 msas instead
50.

15We use a standard Epanechnikov kernel function to weight the local polynomial,
a rule-of-thumb bandwidth estimator, and local-mean smoothing (i.e., polynomial of
degree 0 used in the smoothing).
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has only a small effect on the final ranking of msas. Finally, the high correlations between

our parametric non-parametric indices indicates that the exact functional form chosen to

control for distance does not have big effects on the resulting speed index.

6. Determinants of speed

6.1 Determinants of speed, empirical results

Table 5 reports ols estimations of a simple version of equation (2) for our sample of the

100 largest msas. In all specifications we regress a measure of travel speed on the log

of msa lane kilometers of interstate highways and major urban roads and the log of msa

vehicle travel time. In column 0, the dependent variable is a measure of log average speed

taken directly from the data. In columns 1 to 9, the dependent variable is the log of the

speed index computed from the results of the regressions reported in the corresponding

column(s) of table 3.

Column 6 reports our preferred regression in table 5. In this regression the dependent

variable is our preferred speed index calculated from the results of column 6 in table 3.

This regression implies an elasticity of travel speed with respect to lane kilometers of road

of 0.09. This quantity also corresponds to the share of roads in the production of travel.

The coefficient for log vtt implies a negative elasticity of speed with respect to aggregate

vehicle travel time of −0.13. This value of θ = 0.13 also implies that the elasticity of

vehicle kilometers traveled with respect to travel time is 1− 0.13 = 0.87.

The estimated coefficients for the log of lane kilometers and vehicle travel time are

very similar in columns 0-8 of table 5. In all specifications, the coefficient on log lane

kilometers remains between 0.06 and 0.10, while that on log vehicle travel time remains

between −0.09 and −0.14. Column 9 uses a speed index based on the least precisely

estimated speed-distance relationship, which may create to an attenuation bias.
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Online Appendix F describes extensive robustness tests for the results reported in table

5. We show that the coefficients we find on roads, on aggregate travel time, and the

existence of modest decreasing returns are also robust to our choice of sample, year of

data, definition of roads, and measure of aggregate travel time. In this appendix we

also tackle the endogeneity of both roads and vtt.16 In a first exercise, we instrument

roads and/or vtt. In a second exercise, we implement the methodology developed by

Levinsohn and Petrin (2003). Both exercises largely confirm the results of table 5.

For 2008, we also experimented with similar regressions for primary metropolitan sta-

tistical areas instead of consolidated metropolitan areas. When regressing our preferred

speed index on roads and vehicle travel time, we estimate elasticities of 0.15 for roads and

-0.20 for vehicle travel time. These are slightly larger magnitudes than for msas where the

analogous elasticities are 0.09 for roads and -0.13 for vehicle travel time.

We do not know of estimates directly comparable to ours in the literature. Bombardini

and Trebbi (2012) regress the tti time cost of travel index and another tti-generated

measure of travel delay on population. They report an unconditional elasticity of speed

with respect to population of -7.5% and a corresponding elasticity of 10% for travel delay.

Using slightly different population data and a slightly different sample, we obtain a simi-

lar unconditional elasticity of speed with respect to population of -7.2%. Further estimates

using tti data are reported in Online Appendix F. Using a very different approach and

further away from our focus, Combes and Lafourcade (2005) decompose the decline in

generalized transportation costs for trucks in France over 1978-1998 and find that changes

in the road infrastructure only accounts for 8% of this decline.

Our results also relate to the large literature estimating speed-flow curves in trans-

portation economics and engineering. Estimates for typical road segments (or for small

16The econometric problems with estimating production functions are well-known and
have received considerable attention (e.g., Ackerberg, Benkard, Berry, and Pakes, 2007,
Syverson, 2011). Very much the same issues apply here except that we observe the true
cost of travel. Hence, our analysis is not subject to problems associated with unobserved
prices.
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sets of road segments) typically suggest elasticities of speed with respect to the number of

vehicles of around -50 to -60% (see for instance the speed-flow curves reported in Small

and Verhoef, 2007).17 In their area study for central Yokohama, Geroliminis and Daganzo

(2008) report a speed-flow curve that implies similar speed elasticities. These magnitudes

are much larger than those reported in table 5 for the coefficient on vehicle travel time.

To understand these differences, it is best to think of standard speed-flow elasticities

as ‘micro-elasticities’ whereas our estimates are ‘macro-elasticities’. The first difference

is that with standard speed-flow curves each observation considers the actual number of

vehicles on the road at one point in time whereas our measure of vehicle time travel is

averaged over time. By re-scheduling their trips drivers can avoid the worst of traffic.

Consistent with this conjecture, our data indicate that peak-hours last longer in larger

cities. The second difference is that drivers can also choose alternative routes when traffic

gets too dense somewhere. Finally, as we emphasize above, extant estimates of speed-

flow curves are subject to a simultaneity problem.

Given the analogy between our estimating equation (2) and a firm level production

function, it is also interesting to compare our results about the production of travel with

what is known about the production of other goods. We find that the share of roads in

the production of travel is around 0.10, whereas typical estimates regarding the share of

capital in conventional sectors tend to be around one third. Notwithstanding the fact that

standard production function estimation ignores consumer time as an input, this suggests

that the production of travel is an extremely labour (or time) intensive activity.

We also find evidence of slightly decreasing returns. In all columns of table 5 except

for column 0 and column 9 (for which the coefficients are perhaps less reliably estimated)

17Strictly speaking, traditional estimates of the elasticity of speed with respect to the
number of vehicles estimate θ/(1− θ). Recall that we regress speed on vehicle travel time
to estimate θ. In turn, vehicle travel time is proportional to the number of vehicles and
their speed (keeping trip length constant). Hence, the traditional speed flow regressions
of travel speed on the number of vehicles estimate θ/(1− θ). This makes little difference
in our context given that our preferred value of θ is 0.13.
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an F-test soundly rejects that the sum of the two coefficients is zero. We note that these

calculations of decreasing returns do not take into account the fact that building a lane

kilometer of interstate highways of major urban roads in larger cities is considerably

more expensive (Ng and Small, 2012). Using a measure of cost of capital instead of a

measure of roads suggests that construction costs may increase more rapidly with scale

than productivity decreases.18 Theoretically, one may think of a variety of reasons why

there could be decreasing returns to scale in the provision of road travel. As suggested

previously by Strotz (1965), Mohring (1976) and Kraus (1981), a greater density of roads

implies a more than proportional increase in intersections, arguably a source of decreas-

ing returns. One may also imagine that bottlenecks in the more central part of cities are

worse in larger cities.19 By contrast, the literature that estimates the production function

for firms contains a variety of results but micro-data estimates are often suggestive of

constant returns.

Decreasing returns in the provision of travel has important implications for the financ-

ing of highways, and more specifically to the debate about whether optimally priced

highways are self-financing (Mohring and Harwitz, 1962). Although existing studies

suggest mild economies of scale in road construction, which almost certainly disappear

for the largest, densest cities, we are the first to estimate returns to scale in the congestion

technology for a metropolitan area wide network. If decreasing returns in congestion

18Using data from Duranton and Turner (2012) combined with highway construction
costs from Ng and Small (2012), we obtain 0.37 as a rough estimate elasticity of the cost of
construction of a lane kilometer of highway with respect to city population. We can then
calculate a measure of highway capital cost for each msa by multiplying lane kilometers
by population elevated to the power 0.37. When we re-estimate the regressions of table
5 with this measure of road capital cost instead of lane kilometers, we obtain marginally
lower coefficients for roads and for vehicle travel time. As a result, decreasing returns go
from about -4% in table 5 to about -6% to -7%. More precise estimates of highway costs
are likely to make returns even more strongly decreasing. These two forms of decreasing
returns are conceptually different. Our main exercise is concerned with measuring how
output varies with the quantity of inputs whereas this second exercise is about costs.

19Be it only because the central part of larger cities is denser. This prediction of standard
urban models (Alonso, 1964, Mills, 1967, Muth, 1969) is strongly supported in our data.
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dominate economies of scale in construction, then optimally priced networks would be

revenue generating.

Finally, consistent with extant research on productivity in firms, we find considerable

dispersion in productivity across cities. However, there is much less dispersion in the

ability of us cities to produce travel out of roads and vehicle travel time than in the ability

of firms to produce output from capital and labour. A city at the 90th percentile in our

preferred estimation (column 6 of table 5) produces around 20% more travel from the

same inputs than a city at the 10th percentile. Firm level data usually imply that a firm

at the 90th percentile of productivity produces 100 to 200% more output from the same

inputs than a firm at the 10th percentile (Syverson, 2011, Fox and Smeets, 2011).

6.2 Other determinants of speed

In table 6 we consider a broader set of determinants of travel speed. In column 1, we

introduce a measure of employment centralization, the share of employment within 20

kilometers of the employment weighted centroid of the msa in 1992.20 In column 2, we

use instead the corresponding measure of centralization for population. The results for

both columns indicate that more centralized cities are slower. These findings should be

regarded as suggestive since the R2 increases only marginally relative to the benchmark

estimation without these additional variables and the significance of these coefficients

often disappears when further controls are added. In column 3, we use a measure of

mismatch between employment and residents and find again that a greater mismatch is

associated with slower traffic speeds. We have experimented more broadly with ‘urban

form’ variables than we report here. Consistent with the results reported in table 6, we

find that conditional associations with various measures of density, physical area and

employment concentration, occur routinely in our results. Consistent with earlier results

20We prefer to use lagged variables to minimize endogeneity problems. These lags
typically reduce the significance of the coefficients.

33



in the literature, (e.g., Glaeser and Kahn, 2004), these findings suggest that more compact,

centralized cities are slower. Of course, compact centralized cities could still be desirable

even if travel within them is more costly. Speed is not synonymous with optimality.

In column 4 of table 6, we turn to a different type of variable, population growth. We

find a strong association between slow travel speeds and higher expected growth be-

tween 1980 and 2000.21 A similar but weaker association is found with actual population

growth between 1980 and 2008. That traffic should be slower in cities that have grown

fast even after controlling for their current roadway and vehicle travel time is perhaps

unsurprising. Roadway expansion often takes place at the urban fringe while bottlenecks

worsen in the more central parts. In column 5, we replace expected population growth

with 1920 population. Given that we also condition for current vehicle time travel, which

is highly correlated with current population, our negative coefficient implies that cities

that have grown less since 1920 are faster. This confirms the finding of column 4. In

column 6, we turn to the share of manufacturing in employment in 1983 and find that

cities more specialized in manufacturing are much faster. Given that cities with a greater

share of manufacturing employment have grown less in population and tend to be more

decentralized (Glaeser and Kahn, 2001), the positive sign on manufacturing employment

is consistent with our two main findings so far.

In columns 7 and 8, we introduce two measures of temperature, cooling and heating

degree days, and uncover a weak association between slower traffic and more extreme

weather conditions. We also experimented with other geographic characteristics of cities

such as their elevation range or the ruggedness of their terrain but found nothing. We

also found no result for a broad range of socioeconomic characteristics of cities such as

their income, education, etc. Finally, we note that introducing all these supplementary

explanatory variables has little effect on the coefficients of our two main regressors, roads

and vehicle travel time, both of which remain significant and nearly constant in all the

21We use growth predicted by the composition of economic activity of cities in 1980 and
the subsequent changes in employment by sector.
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columns of table 6.

In table 7, we investigate the relationship between road network configuration and

speed. Following Baum-Snow, Brandt, Henderson, Turner, and Zhang (2012) we con-

struct measures of ring road and radial road capacity of two networks for each msa, the

interstate highway network and the union of this road network with all major urban

roads, both for 2005. Online Appendix A provides details about the construction of these

variables. In column 1, we add a ring road index computed from the 2005 interstate

highway network to our preferred specification of table 5, column 6. In column 2, we

use instead an index of 2005 interstate highway rays. In column 3, we use both indices

at the same time. The rays index becomes insignificant. In contrast, the ring road index

remains significant and indicates that speed is about 1.5% higher in cities where the ring

road index is one unit higher. Since a unit increase in the ring road index reflects a road

traveling about one fourth of the way around a city, the addition of a complete ring road

is associated with about a 6% increase in speed. We note that the coefficient on vehicle

travel time is virtually unchanged and the coefficient on lane kilometers is marginally

lower.

In column 4, we consider the same two indices but compute them for the entire

network of interstate highways and major urban roads. The coefficient on ring roads

becomes much smaller. Next, we return to the rays and ring roads indices computed

solely from the interstate highway network but normalise them by kilometers of interstate

highways in column 5 or take them in logs in columns 6. In both cases, the results are

unchanged and the ring road index remains significant.

That ring roads appear to matter in explaining traffic speed is reminiscent of the results

of table 6 that show the importance of characteristics describing urban decentralisation.

To compare both network and urban form variables, in column 7 we add a measure of

centralization for population to the specification of column 3, while in column 8 we add

the 1983 share of manufacturing employment. Interestingly the coefficients on these two
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variables are very close to those of table 6 while the coefficient on the ring road index

more than doubles relative to column 3. This last set of results suggests that both city

characteristics and road network characteristics play a role in explaining traffic speed.

Overall, the results of table 7 suggest an important role for highway network charac-

teristics, and ring roads in particular, in explaining speed. Some caution is nonetheless

needed because we cannot establish causality. We note nonetheless from results not

reported here that using rays computed from planned 1947 interstate highways yields

similar estimates to those reported in table 7.22

7. The value of speed

Section 3 presents expressions for the deadweight loss from congestion and for the opti-

mal congestion tax. We now turn our attention to evaluating these expressions.

Our preferred estimate of the average supply elasticity θ is 0.13 in section 6. Using

individual data, Duranton and Turner (2011) suggests that the demand for vkt is highly

elastic and provides a point estimate of 16.23 We note that this number describes driving

on interstate highways. For other roads this elasticity may be lower. On the basis of case

studies of two particular cities (Small and Verhoef, 2007, , p.11) suggest values for σ a bit

less than 1.

Table 8 reports calculated values of equation (7) using different values of θ and σ. In

the top three rows, we use our preferred value of θ = 0.13 and range of values for σ

that reflects our uncertainty over this value; our preferred value of 16 from Duranton

and Turner (2009), the much smaller value suggested by case studies,24 and to check

robustness, double the Duranton and Turner (2009) value. When θ = 1 and σ = 16, ∆

is about 0.040. That is, the value of deadweight loss from congestion is equal to about 4%

22There are no ring roads in the 1947 highway plan.
23The working paper version of that work (table 6, columns 4 and 8 in Duranton and

Turner, 2009) contains an explicit estimation of the demand for vkt which yields σ ≈ 16.
24Actually, ∆ is undefined for σ = 1. We report calculations based on σ = 1.01.
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of total travel time. Taking the aggregate travel time of 87.3m minutes for 2008 from panel

b of table 1, converting from minutes per day to hours per year, and adjusting upwards

by 1.25 persons per car, we find 26 million hours per year of deadweight loss due to

congestion in an average msa in our sample, or about 12.4 hours per person. If, following

common practice in the transportation economics literature, we value these hours at half

the average wage of 23 dollars per hour, this is 142 dollars per person per year or 29.8

billion dollars for our entire sample of 100 msas.25.

In the second row, we consider our preferred estimate of θ and less elastic demand,

σ = 1. This reduces our estimate of the cost of congestion to about 1% of travel time and

deadweight loss to 6.7 billion dollars. In the third row, we consider an even more elastic

travel demand, σ = 32. This slightly increases our estimate of the cost of congestion

to 4.5% of travel time. In rows 4 and 5 of table 8 we consider σ = 16 and consider

an estimates of the supply elasticity θ about two standard errors above and below our

preferred estimate. Unsurprisingly, deadweight loss is larger as supply is less elastic. In

sum, this table suggests that the value of congestion is on the order of tens of billions of

dollars per year, though uncertainty about the magnitude of the demand elasticity implies

precludes much more precision.

Our estimates of annual deadweight loss are conservative in that we only consider the

time cost of travel and ignore fuel and other car usage costs, e.g., maintenance, pollution

and collisions for which estimates are reviewed in Parry, Walls, and Harrington (2007).

We also consider only travel by residents and ignore commercial traffic for which the time

25Existing estimates of value of time traveled for commuters generally center around
50% of an individual’s hourly wage (Small and Verhoef, 2007). We note that the Texas
Transportation Institute uses a much higher number of nearly 24 dollars per hour per
person (Schrank et al., 2010)
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and fuel costs of congestion are arguably higher.26 In addition, our estimates are based

only on the population of the 100 largest msas. While these msas account for about two

thirds of the us population, and presumably, most of the traffic congestion, to the extent

that congestion occurs outside of these 100 msas, our estimates are too low. Finally, we

expect drivers to change their time of departure to avoid congestion.27 Such re-scheduling

is costly and is not reflected in our calculations.

We can also evaluate the optimal congestion tax that we calculate in equation (8). Since

equation (8), gives τ∗ in minutes per kilometer, while congestion taxes are usually stated

in cents per kilometer, we convert from minutes to dollars using the same 11.5 dollars per

hour cost of time that we used above. We see from the top row of table 8 that evaluating

this tax at equilibrium quantities with θ = 0.13 and σ = 16 gives τ∗ = 0.035 dollars, or 3.5

cents, per kilometer. This tax is almost unchanged in response to changes in the demand

elasticity, but more dramatically in response to large changes in the supply elasticity θ.

In their review of the literature, Parry et al. (2007) recommend a value of 3.2 cents per

kilometer on the basis of ‘back-of-the-envelope calculations by the us Federal Highway

Administration. Parry and Small (2005) propose using a range from of 1.7 to 3.2 cents per

kilometer with, as they mention, “a considerable range of uncertainty”.28 Morhing (1999)

suggests a value of 2.5 cents per kilometer for Saint Paul and Minneapolis. Studies with

a more limited focus often suggest larger congestion taxes. For instance Keeler and Small

26To fix ideas, according to Duranton and Turner (2011), the share of trucks traffic for
interstate highways in 228 large us msas was 13% in 2003. In the calculations of the
Texas Transportation Institute the cost of truck congestion represents slightly more than
a quarter of the total cost of congestion. As for fuel losses, they represent only a fraction
of the time cost of congestion. To see this, consider an hour lost to drive 10 kilometers.
With a car consuming 15 liters per 100 kilometers, this is only 1.5 liters of fuel or about 1.5
dollars at one dollar per liter. This is small relative to a time cost of 11.5 dollars per hour.

27Trip scheduling is the subject of a large literature, e.g., Vickrey (1969), Noland and
Small (1995).

28The Parry and Small gas tax estimate is adjusted downward to reflect the fact that
part of the response to the tax involves increased fuel economy. Absent this adjustment,
their estimates would be somewhat larger.
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(1977) find a range of values between 6 and 22 cents per kilometer for rural highways and

between 87 and 112 cents per kilometer for city highways.

The congestion tax estimates presented in table 8 range from about 2 to 5 cents per

kilometer, and are always close 3.5 cents per kilometer for our preferred value of the

supply elasticity, θ = 0.13. Three comments about this finding are required. First, we

calculate an average congestion price over roads and time. Our relatively small conges-

tion tax reflects the fact, suggested by the average travel speeds of table 1, that most trips

occur at uncongested times and places. Second, our methodology fully reflects responses

to congestion that are not permitted in other estimates. In particular, we calculate the

cost of congestion conditional on drivers optimizing against all possible reroutings and

changes in trip times. Ours is a congestion price to be applied to all roads at all times.

That this quantity is smaller than taxes we might apply to important roads at busy times

is not a surprise. On the other hand, that such a crude tax should yield a welfare gain

measured in tens of billions of dollars per year is more surprising and indicates the

economic importance of traffic congestion.

It is also of interest to compare the magnitude of our optimal congestion tax with the

magnitude of the gasoline tax. In 2008, gasoline taxes in the us were about 40 cents

per gallon.29 At 20 miles (or 32 kilometers) per gallon, our 2 to 5 cents per kilometer

congestion price suggests a gasoline tax of 62 to 160 cents per gallon. Since the current

federal gasoline tax is a user fee intended to pay for the construction and maintenance of

the highway system, in order to provide the same level of highway funding and address

congestion, albeit very crudely, gasoline taxes in the us would need to increase by a factor

of 2.5 to 4.

Expansions of the road network are often proposed as a response to congestion. To

29Federal gasoline taxes in the us were 18.4 cents per gallon in 2008 and the av-
erage state gasoline tax was about 20 cents per gallon (http://www.fhwa.dot.gov/
policyinformation/statistics/2014/mf205.cfm, February 2016) for a total of 38.4 cents
per gallon.
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assess this policy we compare the change in social surplus with construction costs. In

figure 2, social surplus at vkt
eq
1 is the integral from zero to vkt

eq
1 of the difference between

the demand and marginal cost curves. As a consequence of the fact that access to the road

network is unpriced, Ceq = AC(vkt
eq) in equilibrium. Because the total cost of vkt

eq is

vkt
eq × AC(vkt

eq), it follows that in any equilibrium where access to the road network

is unpriced, the value of social surplus is simply consumers surplus, the area under the

demand curve but above the price line. Thus, the equilibrium change in social surplus

resulting from a decrease in the cost of transportation is simply the corresponding change

in consumers surplus.

For small changes in price, we can approximate the resulting change in consumers

surplus with the product of the price change and the ex ante equilibrium quantity. To

calculate the roads elasticity of equilibrium speed, εSR, we use the demand equation (10)

and vkt = S× vtt to solve for εSR = α/(1 + θ(σ− 1)). Evaluating at θ = 0.13, α = 0.09

and σ = 16, we have εSR ≈ 0.03. That is, a 1% increase in a city’s stock of road causes

about 0.03% increase in equilibrium speed.

With a mean daily msa vkt of 64.2 million, this increase in speed implies an increase in

consumers surplus of about 162,000 hours annually. Valuing this time at 11.5 dollars per

hour and scaling by 100 to calculate a total for our whole sample, gives an increase in con-

sumers surplus of about 186 million dollars per year.30 When σ = 1, the corresponding

increase in consumer surplus is 550 million dollars per year, about three times as large.

Using data from Duranton and Turner (2012) based on estimates of road construction

costs by Ng and Small (2012) and maintenance costs from the us Bureau of Transportation

Statistics (2007), increasing the supply of interstate highways by 1% in all of the 100 largest

msas has an annual cost of 1.45 billion dollars. It is much harder to know the cost of

expanding other major urban roads by 1%. Panel a of table 1 indicates that they represent

30With εSR = 0.03, at 87.3 m minutes per msa-day, an increase in speed of 0.03% implies
a reduction in time of 87.3m× 0.03

100 ×
365
60 ≈ 159,000 hours per msa/year. Multiplying this

by 11.5 $/hour and by 100 msas gives the final number.
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five to six times as many lane kilometers. Even if major urban roads are much cheaper

to build, a total annual cost of 3 billion dollars for a 1% expansion of the road network is

most likely a lower bound. This is many times larger than the estimated benefits.

Comparing this calculation of costs and benefits suggests that the alleviation of conges-

tion is probably not a sufficient justification for wholesale expansions of the road network.

Speed is simply not sensitive enough to changes in the road network. We note that this

calculation confirms the conclusion of a similar calculation performed in Wheaton (1978).

8. Conclusion

Road transportation accounts for 18% of the budget for an average us household and

about 72 minutes per day for an average us driver in 2008. In a typical year, the us spends

about 150 billion dollars on road construction and maintenance. Congestion naturally

arises in the course of turning these resources into travel. Despite a distinguished history

of research in transportation economics, the extant literature has struggled to measure the

value of investments in road transportation or the social cost of road congestion.

We make three advances in this agenda. First, we develop an econometric methodol-

ogy and data to identify city level supply curves for trip travel. With these supply curves,

we construct an index of travel speed for each of the largest us cities. This index number,

for the first time, provides a theoretically founded measure of the efficiency with which

different locations produce transportation.

Our investigation of the determinants of our speed index suggests that the production

of transportation at the city level is subject to slight decreasing returns to scale. This

finding provides an empirical basis for the positive relationship between city size and

congestion costs that is axiomatic in nearly all extant theoretical models of city size. It

also reveals the role of roads, travel time, and unobserved productivity. The presence of

economically important variation in the unobserved productivity of cities at producing

transportation suggests the possibility of large gains in efficiency if slow cities are able
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to emulate fast cities. We conduct a rudimentary investigation of city characteristics

associated with efficiency. Our findings are unsurprising: dense centralized cities do

not allow automobiles to travel at a high speed, while cities with ring roads do allow

automobiles to travel at high speeds. Refining this investigation is an important topic for

further research and may provide an empirical basis for the design of cities where travel

is provided more efficiently.

Our investigation of the efficiency of travel amounts to the comparison of equilibrium

speed with counterfactual, out-of-equilibrium scenarios. In this, it resembles the widely

known travel cost indices published by tti. We note however that the congestion costs

estimated by tti do not evaluate an economically meaningful definition of congestion.

Such a measure of congestion is intrinsically subtle, and requires the calculation of the

deadweight loss incurred at equilibrium levels of travel as opposed to optimum. Our es-

timates allow us a rough, and highly aggregated calculation of the deadweight loss from

congestion. This calculation indicates that the losses from congestion are probably even

larger than those suggested by counterfactual supply improvements. Since equilibrium

responses dissipate much of the benefit from supply improvements, our results suggest

that the largest gains in transportation policy can be obtained by managing demand.
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Table 1: Summary Statistics for the 100 largest MSAs

Variable 1995 2001 2008

Panel A. Trip-level data based on the NHTS

Mean trip distance (km) 12.5 13.2 12.8
(16.2) (17.1) (16.4)

Mean trip duration (min) 15.1 17.6 17.5
(14.2) (15.3) (15.2)

Mean trip speed (km/h) 43.1 39.5 38.5
(23.0) (22.5) (22.2)

Mean trip number (per driver) 4.5 4.2 4.1
(2.6) (2.4) (2.3)

Total observed number of trips 152,512 168,683 419,331

Panel B. MSA-level data based on the HPMS and Census

Mean daily vehicle kilometers traveled (’000,000 km) 51.3 59.7 64.2
(74.7) (85.1) (90.9)

Mean daily vehicle travel time (’000,000 min) 62.1 79.2 87.3
(91.4) (114.6) (126.2)

Mean lane km (interstate highways, ’000 km) 2.1 2.3 2.4
(2.3) (2.4) (2.4)

Mean lane km (major urban roads, ’000 km) 10.5 11.9 14.4
(13.5) (16.1) (18.2)

Mean MSA population (’000) 1,777 1,923 2,090
(2,715) (2,877) (3,028)

Notes: Authors’ computations using NHTS sampling weights to compute the means of
Panel A. Standard deviations in parentheses. Total vehicle kilometers traveled and total
vehicle time traveled are estimates for privately operated vehicles in MSAs. Interstate
highways are for entire MSAs. Major urban roads are measured within the urbanized
area of MSAs.



Table 2: Mean trip distance in kilometers, by trip purpose, for the 100 largest MSAs

Trip purpose Frequency (1995-2008) km 1995 km 2001 km 2008

To/from Work 23.6% 18.6 18.8 19.1
(19.0) (18.8) (19.1)

Work-related business 3.3% 17.6 20.9 18.4
(21.0) (23.4) (21.5)

Shopping 21.8% 7.8 8.6 8.2
(11.3) (12.1) (11.2)

Other family/personal business 24.3% 9.4 10.1 9.4
(12.7) (14.3) (13.7)

School/church 4.6% 11.5 11.6 12.2
(13.3) (13.6) (13.5)

Medical/dental 2.2% 13.3 12.8 13.0
(14.9) (13.2) (13.5)

Vacation 0.3% 35.1 34.5 25.6
(41.0) (40.3) (34.6)

Visit friends/relatives 5.7% 15.7 17.8 17.2
(20.2) (23.0) (22.7)

Other social/recreational 13.8% 12.4 12.2 11.1
(17.1) (16.4) (15.1)

Other 0.5% 13.4 20.3 22.4
(18.6) (25.4) (23.9)

Notes: Authors’ computations using NHTS sampling weights and all three years of data
(pooled together to compute frequencies) by averaging across all trips. Standard
deviations in parentheses.



Table 3: Estimation of inverse-supply curves for 100 largest MSAs for 2008

(1) (2) (3) (4) (5) (6) (7) (8) (9)
OLS1 OLS2 OLS3 FE IV1 IV2 IV3 IV4 IV FE

Mean c 1.412 1.389 1.390 1.393 1.314 1.308 1.310 1.248 1.265
(0.094) (0.091) (0.093) (0.102) (0.147) (0.148) (0.132) (0.143) (0.253)
[0.030] [0.002] [0.001] [0.033] [0.051] [0.050] [0.046] [0.052] [0.147]

Mean γ 0.426 0.421 0.421 0.416 0.356 0.353 0.355 0.342 0.348
(0.034) (0.034) (0.034) (0.037) (0.074) (0.078) (0.066) (0.075) (0.131)
[0.014] [0.001] [0.001] [0.024] [0.035] [0.034] [0.031] [0.036] [0.105]

Notes: Mean of the coefficients across all cities. Standard deviation of city coefficients in
parentheses. Mean of the standard deviation of city coefficients in squared parentheses.
OLS estimations in columns 1-4 and IV in columns 5-9.
Dependent variable: log minutes per kilometer for individual trips.
Controls: No control in column 1. Controls for household income and its square, driver’s
education and its square, age, dummies for males, blacks, and workers, and a quartic for
the time of departure in columns 2 and 5-8. 17 dummies for household income, four
dummies for education, age, dummies for males, blacks, hispanics, and workers, 23
dummies for the hour of departure, 11 dummies for the month of departure, and a
dummy for trip taken during the weekend in column 3. Driver fixed effects in columns 4
and 9.
Instruments: Mean trip distance for trips of the same purpose in the same MSAs in
column 5. Same instrument but computed from the four most similar MSA in term of
population in columns 6 and 9. Trip purpose in column 7 (8 categories) and column 8 (2
categories; commutes and other work related trips, shopping, medical and dental, and
school and church). See the text for a discussion of instrument strength.



Table 4: Ranking of five fastest and five slowest of the 50 largest MSAs

2008 2008 2001 2001 1995 1995 Population
Index Rank Index Rank Index Rank rank

Slowest:
Miami 0.88 1 0.87 1 0.92 2 12
Chicago 0.91 2 0.94 2 0.90 1 3
Portland 0.94 3 1.04 18 1.09 27 21
Seattle 0.94 4 0.95 3 0.99 8 14
Los Angeles 0.95 5 0.98 7 1.00 11 2
Fastest:
Rochester 1.16 46 1.14 40 1.15 39 50
Kansas City 1.18 47 1.29 49 1.08 22 28
Greensboro 1.19 48 1.24 47 1.25 48 38
Grand Rapids 1.22 49 1.29 50 1.13 35 45
Louisville 1.22 50 1.09 27 1.29 50 49

Notes: Speed index constructed from the estimations reported in column 6 of table 3.



Table 5: The determinants of speed, 100 MSAs in 2008

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9)
Sraw SOLS1 SOLS2 SOLS3 SFE SIV1 SIV2 SIV3 SIV4 SIV FE

log lane 0.073c 0.073a 0.083a 0.085a 0.064a 0.084b 0.090b 0.084b 0.096a 0.037
(0.037) (0.024) (0.023) (0.023) (0.023) (0.038) (0.040) (0.033) (0.036) (0.038)

log VTT -0.094b -0.094a -0.11a -0.11a -0.085a -0.13a -0.13a -0.13a -0.14a -0.064c

(0.036) (0.020) (0.020) (0.020) (0.020) (0.034) (0.035) (0.029) (0.033) (0.033)
R2 0.12 0.35 0.46 0.47 0.31 0.37 0.38 0.41 0.39 0.06

Notes: OLS regressions with a constant in all columns. Robust standard errors in
parentheses. a, b, c: significant at 1%, 5%, 10%. 100 observations per column. In column
0, the dependent variable is average trip speed. In columns 1-9, the dependent variable
is the log of the index computed from the results of the regressions reported in the
corresponding column of table 3. An F-test in all columns rejects that the sum of the two
coefficients is zero.



Table 6: The determinants of speed, further explanatory variables

(1) (2) (3) (4) (5) (6) (7) (8)
Added: Emp. Pop. Job/resid. E pop. log pop. s. manuf. Cooling Heating

central. central. mismatch growth 1920 emp. deg. days deg. days

log lane (total) 0.085b 0.077b 0.098b 0.071c 0.072c 0.070c 0.087b 0.080c

(0.039) (0.036) (0.039) (0.042) (0.040) (0.042) (0.040) (0.041)
log VTT -0.15a -0.14a -0.14a -0.11a -0.14a -0.11a -0.13a -0.13a

(0.033) (0.031) (0.035) (0.037) (0.035) (0.037) (0.035) (0.036)
Added variable -0.23b -0.31a -0.15b -0.20a 0.29a 0.25a -0.18a 0.17b

(0.107) (0.113) (0.070) (0.058) (0.079) (0.066) (0.067) (0.069)
R2 0.40 0.42 0.41 0.42 0.43 0.45 0.42 0.41

Notes: OLS regressions with a constant in all columns. Standardized coefficient reported
for the added variable. Robust standard errors in parentheses. a, b, c: significant at 1%,
5%, 10%. 100 observations per column. Dependent variables is log SIV2 in all columns.



Table 7: The determinants of speed, road network variables

(1) (2) (3) (4) (5) (6) (7) (8)
Rings Rays Both Both IH IH + pop + s. manuf.

IH IH IH IH+MR per km in log central. emp.

log lane (total) 0.072c 0.079c 0.071c 0.081b 0.088b 0.071c 0.059 0.073c

(0.042) (0.041) (0.042) (0.040) (0.043) (0.042) (0.039) (0.043)
log VTT -0.13a -0.13a -0.13a -0.13a -0.13a -0.13a -0.14a -0.11a

(0.036) (0.036) (0.036) (0.035) (0.037) (0.036) (0.032) (0.037)
Ring index 0.019a 0.016b 0.0029c 0.12b 0.039b 0.036b 0.035b

(0.0068) (0.0076) (0.0017) (0.058) (0.016) (0.015) (0.014)
Rays index 0.0081c 0.0046 -0.0018 0.014 -0.0026 0.0012 -0.0017

(0.0046) (0.0051) (0.0014) (0.043) (0.016) (0.014) (0.013)
Added variable -0.17b 0.25a

(0.066) (0.071)
R2 0.42 0.40 0.43 0.40 0.41 0.42 0.46 0.48

Notes: OLS regressions with a constant in all columns. Robust standard errors in
parentheses. a, b, c: significant at 1%, 5%, 10%. 100 observations per column. Dependent
variables is log SIV2 in all columns.
In columns 1, 2, and 3, the ring and rays indices are computed as described in Online
Appendix A from the 2005 interstate network. In column 4, the ring and rays indices are
computed from the 2005 network of interstate highways and major urban roads. In
column 5, we normalize the ring and rays indices (from the 2005 interstate network) by
lane kilometers of interstate highways and major urban roads (measured in thousands).
In column 6, we take the log of one plus the ring and rays indices (from the 2005
interstate network). In columns 7 and 8, we enrich the specification of column 3 with an
index of population centralisation and the share of manufacturing employment,
respectively.



Table 8: Estimates of the value of congestion and the optimal congestion tax

θ σ ∆ DWL ($×109) DWL (hours/person) τ∗ ($/km)
0.13 16 0.040 29.8 12.4 0.035
0.13 1 0.009 6.7 2.8 0.038
0.13 32 0.045 33.6 14.0 0.035
0.07 16 0.017 12.6 5.2 0.019
0.19 16 0.065 49.2 20.5 0.052



Figure 1: Speed and distance for some Chicago trips in 2008.
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Figure 2: Welfare analysis.
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Figure 3: Model of equilibrium trip distance.
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Appendix A. Data

Consistent msa definition: msas are defined as aggregations of counties. We use the 1999

definition of consolidated metropolitan statistical areas (msa) and, in some robustness
checks, primary metropolitan statistical areas (pmsas). For 2008-2009, nhts data contain
a county identifier that allows us to identify the corresponding msa and pmsa. For 1995-
1996 and 2001-2002, the npts/nhts data only contain an msa identifier consistent with
our msa definition. Other msa level variables are constructed either from administrative
data reported at the county level, or from gis data assigned to msas on the basis of an
electronic map of 1999 county or msa boundaries.

nhts data (trip-level data): Our trip-level data are from the 1995-1996 National Personal
Transportation Survey (npts) and its successors, the 2001-2002 and 2008-2009 National
Household Transportation Surveys (nhts). The surveys are sponsored by various agen-
cies at the us Department of Transportation. Detailed documentation on the nhts sample
design and data content is available on the nhts website (http://nhts.ornl.gov/). The
data are intended for use by transportation planners in governmental agencies and aim
at providing reliable, representative and comprehensive micro-data about the daily travel
of Americans.

nhts aggregate data: As explained in the text, the general idea behind our method
for computing msa totals (vkt and vtt) from trip level data is to multiply averages
for individual travel in each msa by population size. In practice however, this simple
multiplication could lead to biased estimates, because of how we remove outliers.

We therefore proceed as follow. Our sample consists of all trips entered by the driver
of a car, van, suv, pick-up or other truck in the 100 largest msas. We identify the 0.5%
of trips with the longest distance and the 0.5% of trips with the shortest distance, and
eliminate all trips by an individual who entered any of these extreme values. This is
because including individuals with an incomplete trip schedule would bias any averages
that we compute later. We use a similar procedure to remove outliers for trip time and
speed. The individuals that we drop from the sample are more likely to be drivers, so to
obtain population totals out of average distance and time in this clean sample, we need to
compute, prior to eliminating outliers, the share of individuals who drive at least one trip
in each msa. Then, we multiply this share by msa adult population to obtain an estimate
of the total number of people who drive at least one trip in each msa. Finally, to obtain an
estimate of vtt and vkt in each msa, we just take the average time and distance traveled
from the clean sample of drivers, and multiply it by the population of drivers.
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Figure A.1: Illustrations of ring and radial road algorithms for Oklahoma City in 2005.

Left panel illustrates radial road algorithm. Right panel illustrates ring road algorithm.

As an example, suppose that in a given msa, the nhts contains 5 individuals driving
at least one trip, out of 10 individuals in our sample for that msa. If msa adult population
is equal to 100, then our estimate of the number of drivers in this msa is (5/10)× 100 =

50. Now suppose that for the drivers who remain in the sample after removing outliers,
average distance driven is equal to 20 kilometers. Then our estimate of vkt in this msa is
50× 20 = 1000 vehicle kilometers traveled.

hpms data (road infrastructure): To estimate our travel production function, we rely on
the Highway Performance Monitoring System (hpms) data for 1995, 1996, 2001, 2002, and
2008. These data are collected and maintained by the us Federal Highway Administration
in cooperation with many sub-national government agencies. Documentation is available
in several reports from the Federal Highway Adminstration (dot, 2003a, 2003b, and 2005).
See also Duranton and Turner (2011).

For the interstate highway system, the hpms records number of lanes, length, average
annual daily traffic (aadt), and county. By construction, road segments do not cross
county borders. For segments in urbanized areas, the hpms also provides an urbanized
area code. Since msas are county based units, these data allow us to calculate lane
kilometers for the urbanized and non urbanized area interstate systems by msa.

Road network measures: Our ring road and radial road index variables are based on
the 2005 National Highway Performance Network (nhpn) map of the us road network.
This map, which complements the entirely tabular hpms data, describes all interstate
highways in the us and a subset of other major roads. From the source (nhpn) we con-
struct two subnetworks. The first consists of all open segments of the interstate highway
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network, the second consists of all open segments of interstate highway, along with all
principal arterial roads and urban freeways or expressways. These two networks corre-
spond closely to the measures of interstate highways and major urban roads (including
interstate highways) that we construct from the hpms.

For each of these networks we calculate a measure of ring road capacity and a measure
of radial road capacity. As their names suggest, these indices measure the ability of the
network to carry traffic radially from the center and circumferentially around the center.
Since both concepts fundamentally rely on knowing where the center of each city is,
our first step is to locate the centers of our msas. To accomplish this, we use the 2000

zipcode business patterns data and the 2000 census zipcode boundaries files to identify
the zipcode in each msa with the highest employment density.31

Once we have identified the center of each msa we are able to calculate our ring and
radial road indexes. The left panel of figure A.1 illustrates the calculation of our radial
road index for the Oklahoma City msa and the interstate highway network. To calculate
the radial road index, we first draw two circles centered on the cbd, the first with radius
5 kilometers and the second with radius 10 kilometers. We then calculate the number
of times the road network intersects each ring. The minimum of these two values is
our radial road index, which in this case is 5. If doing this calculation by ‘eyeball’ one
would probably struggle over whether there were 4 or 5 radial roads. Calculating the
ring road index is more involved, and is illustrated in the right panel of figure A.1. To
begin, we draw two rays out from the center, one due North and the other Northwest.
We next calculate the number of times the road network intersects each ray in the interval
between 5 and 9 kilometers from the center. The minimum of the these two is the radial
road index for this quadrant in the 5 to 9 kilometers donut. In the right panel of figure
A.1, this value is one. We then replicate this exercise for larger donuts, 9-15 kilometers
and 15-25 kilometers, and sum over all three donuts to get the radial road index for the
first quadrant. The size of the three disks is chosen to preserve proportions as we scale
up the size of the disks. To calculate our ring road index, we replicate this procedure in
each quadrant and sum over quadrants. We note that these indexes are based on logic
first developed in Baum-Snow et al. (2012).

Population and employment data: Population data for 1995-1996, 2001-2002, and 2008-
2009 is obtained from annual population estimates provided by the us census for these
years. These estimates are themselves based on interpolations and extrapolations of pop-

31The census maintains ‘zipcode’ boundary files based on census blocks. They do not
exactly correspond to the zip codes boundaries used by the post office and are more stable
over time.
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ulation counts made by the us census. In some regressions we also use population data
dating back to 1920, the first census year which allows us to retain our samples of msas.
We also use employment data from the County Business Patterns to build two variables
for our exploration of the determinants of speed. The first is that of manufacturing
employment. The second is an exogenous measure of msa employment growth which
interacts the sectoral composition of economic activity in an msa in 1980 with the national
growth of these sectors between 1980 and 2000.

Climate: We use two measures of temperature in us msas taken from the data used by
Burchfield, Overman, Puga, and Turner (2006).

Urban form: We have available the data underlying Burchfield et al. (2006). These data
provide fine scale employment data from 1994 zipcode business patterns and from 1990

tract level census data: for every 990 meter × 990 meter cell in a regular grid covering
the whole of the continental us, these data report imputed 1990 population and 1994

employment. These data allow us to calculate the measures of urban form used in the first
three columns of table 6; employment centrality, population centrality, and employment-
residence mismatch.

The population centrality measure reports the largest share of population that occurs in
any ring of radius 20 kilometers whose center lies in the msa. The employment centrality
measure is identical, but is based on employment rather than population.

The mismatch variable provides an aggregate measure of the extent to which people
do not live where jobs are (though not of the extent to which people do not live where their
jobs are). Specifically, let ei be employment in cell i and pi be population. Our mismatch
measure is

∑i∈msaj
|pi − αei|

∑i∈msaj
pi

,

where α is the inverse share of employment in total population(
α ∑i∈msaj

ei ≡ ∑i∈msaj
pi

)
. Since we are normalizing by population, this is a per

capita measure of mismatch.

Instruments for contemporary interstate highways: Our measures of the 1947 interstate
highway plan and the 1898 railroad network are taken from Duranton and Turner (2011)
and are documented there. Further discussion of the 1947 highway plan is available in
Baum-Snow (2007) and Duranton and Turner (2012).

Texas Transportation Institute travel time indices: Until 2009 (using 2008 data), the annual
tti travel time indices were constructed using counts of vehicles on interstate highways
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and major urban roads from the average annual daily traffic (aadt) item measured in the
hpms ‘Sample’ data. More specifically, the tti methodology subjected the aadt variable
to a series of transformations using external information and turned it into a measure of
speed. This measure of speed was then ‘operationally’ adjusted for several factors (e.g.,
the existence of a ramp metering system to access interstate highways) to obtain a final
measure of speed by city. These quantities were then compared to a measure of free flow
traffic to infer a travel cost index by city and their travel cost index for the us.

In 2010 (to exploit 2009 data), the tti paired with inrix, a leading provider of traffic
information, directions, and driver services. Real speed data is now measured using in-
formation provided by location devices from vehicles operated by various fleet operators
and by the smart phones of voluntary individuals for a subsample of segments of roads
covered by the hpms ‘Sample’ data.

Importantly, the tti data cover only urbanized areas. This implies that areas for
which the tti computes its index are smaller than the msas that we use. This said, the
‘urbanized’ part of msas will host the vast majority of their residents and jobs. In order
to compare our msa based index with tti, we merged several tti urbanized areas to
approximate msas more closely. To do this, we weighted urbanized areas by their popu-
lation. The full list of merged tti urbanized areas is: Washington dc and Baltimore, San
Francisco-Oakland and San Jose, Cleveland and Akron, Los Angeles and Riverside-San
Bernardino, Denver and Boulder, Greensboro and Winston-Salem, Boston and Worcester.
Finally, for Fort Myer-Cape Corral msa, the only tti data point is for Cape Corral and for
Norfolk-Virginia Beach-Newport News msa, the only tti data point is for Virginia Beach.
Overall we can match 47 of the 50 largest msas and 71 of the 100 largest using data for the
90 urban areas for which the tti reports an index for 2008.

Appendix B. Derivation of VKTopt,VKTeq,τ∗ and ∆

To solve for equilibrium vkt, we set average cost (4) equal to the demand for vkt (6) and
solve to get,

vkt
eq =

(
Γ1−θΩ−σ

) 1
1−θ(1−σ) . (b1)

Optimal vkt results from equating demand (6) with marginal cost (5)

vkt
opt = (1− θ)

σ(1−θ)
1−θ(1−σ)

vkt
eq. (b2)

We note that we can use these expressions to evaluate the amount of ‘overdrive’, that is,
the difference between equilibrium vkt and optimal vkt.
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Equilibrium deadweight loss is the area of the approximately triangular region of
figure 2 with vertices at points A, B and C. More precisely, this area is,

dwl =
∫

vkt
eq

vkt
opt

[
1

1− θ
Ω

1
1−θ vkt

θ
1−θ − Γ

1
σ vkt

− 1
σ

]
dvkt . (b3)

Evaluating this integral, we have

dwl = Ω
1

1−θ

[
(vkt

eq)
1

1−θ −
(
vkt

opt) 1
1−θ

]
− σ

σ− 1
Γ

1
σ

[
(vkt

eq)
σ−1

σ −
(
vkt

opt) σ−1
σ

]
. (b4)

Using equation (b2), this becomes

dwl =
(

1− (1− θ)
σ

1−θ(1−σ)

)
Ω

1
1−θ (vkt

eq)
1

1−θ −
(

1− (1− θ)
(σ−1)(1−θ)
1−θ(1−σ)

)
σ

σ− 1
Γ

1
σ (vkt

eq)
σ−1

σ .

(b5)

In equilibrium, we can use the supply curve (4) and the demand curve (6) to write

Γ
1
σ = C

eq (vkt
eq)

1
σ (b6)

and

Ω
1

1−θ = C
eq (vkt

eq)−
θ

1−θ . (b7)

Using these two identities, along with the fact that vtt
eq = Ceq × vkt

eq, we can write
deadweight loss entirely in terms of total travel time and parameters,

dwl =

[(
1− (1− θ)

σ
1−θ(1−σ)

)
− σ

σ− 1

(
1− (1− θ)

(σ−1)(1−θ)
1−θ(1−σ)

)]
vtt

eq . (b8)

Dividing by vtt
eq gives ∆.

The magnitude of the optimal Pigovian congestion tax is the difference between the
marginal and average cost of vkt at the optimum. Using equation (5), we have

τ∗ =
θ

1− θ
AC(vkt

opt). (b9)

Together with equation (4), this gives

τ∗ =
θ

1− θ
Ω

1
1−θ (vkt

opt)
θ

1−θ . (b10)

To proceed, note that we can use equation (b7) to write Ω
1

1−θ in terms of vkt
eq and

equation (b2) to write vkt
opt in terms of vkt

eq. Substituting and simplifying gives,

τ∗ = θ(1− θ)
σθ

1−θ(1−σ)
−1Ceq. (b11)

Recalling that vtt
eq = Ceq

vkt
eq gives the desired result.
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Appendix C. Discussion of trip length instrument

While mean distance by trip type does not appear explicitly in our the system of equations
(12)-(13), it is arguably a good proxy for the willingness to pay for a trip of a given type.
Just as trip type dummies vary with the intercept of the demand curve, so does mean trip
distance by type. However, the arguments for the validity of trip type dummies and the
validity of mean distance by trip type are different.

Trips to the gym may be observed on average under better weather (and traffic) condi-
tions than trips to work. This is not an issue as long as this differential selection of trips
does not affect the distance of trips to the gym relative to the distance of trips to work.
However, suppose that when the weather is worse drivers go to a closer gym and to a
closer workplace. If weather conditions affect distances equally for all types of trips, then
unobserved weather introduces noise but does not lead to a violation of the exogeneity
condition. On the other hand, if more than 10 centimeters of snow causes drivers to
choose a closer gym but does not affect the choice of workplace, then mean trip distance
by type is correlated with the error term in the speed regressions. More generally, average
distances by trip type do not satisfy the exogeneity condition when the unobserved state
of traffic differentially affects the distance of different types of trips depending on mean
distance.

Whether the length of shorter trip types should be more (or less) sensitive to traffic
conditions than distance for longer trips types is not obvious. While (on average) distance
for short shopping trips may be sensitive to traffic conditions, that of longer recreational
trips might be as well. On the other hand, distance for short trips to school may be
insensitive to traffic conditions and long trips to work may be similarly insensitive. This
said, to avoid a possible correlation between average trip distance and unobserved traffic
conditions, we can again restrict attention to trips with low discretion. We can also use
extensive controls for trip characteristics, as we do when using trip type dummies as
instruments.

We note that if trip type dummies and mean distance by trip type fail their respective
exogeneity conditions, they do so for different reasons. Trip type dummies may be subject
to a selection bias where different types of trips are observed only under systematically
different unobserved traffic conditions. Mean trip distance may be subject to a simul-
taneity problem where mean distance for trips of different types is affected differently
under different unobserved traffic conditions in a way that is correlated with this speed.
Therefore, if both types of instruments lead to similar estimates this indicates that they are
either both valid or, improbably, that the selection problem for trip type dummies has the
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same bias on our estimates as the hypothetical simultaneity problem for average distance
by trip types.

Appendix D. More robustness tests of the speed-distance relationship

Panel a of table A.1 replicates panel a of table 3 for our sample of the 50 largest msas. For
more demanding estimations like column 9, the coefficients of interest are more precisely
estimated than when we consider the 100 largest msas. Even for the specification of
column 1, the mean of the standard error on c and on γ is about twice as large for msas
ranked between 51 and 100 in terms of population as for the largest 50.

Panels b and c of table A.1 replicate panel a for 2001, and 1995, respectively. The
results for 2001 are similar to those for 2008. This is consistent with mean trip distances
and speeds being essentially the same in 2001 and 2008. We note nonetheless that the
variances of the city intercepts and distance elasticities are larger in 2001 than in 2008.
This probably reflects the larger sample drawn by the 2008 nhts. For 1995, the estimated
distance elasticities of speed are close to but smaller than those for 2001 and 2008. The
city intercepts are also smaller. This is consistent with the observed reduction in mean
speed after 1995.

Table A.2 reports further results which described in the text. Table A.3 ranks travel
speed in all 50 of the largest MSAs, rather than just the fastest and slowest five reported
in table 4.

Appendix E. Comparisons with TTI’s index and a PMSA speed index

The Texas Transportation Institute produces the best known and most widely reported
indices of travel speed. We here investigate the differences between our index and the
2008 and 2009 tti indices (Schrank and Lomax, 2009, Schrank et al., 2010).

While tti reports their index annually, their methods changed from 2008 to 2009

(Schrank and Lomax, 2009, Schrank et al., 2010). The 2008 tti index is based on an
estimate of the time cost of travel constructed from data in the hpms describing road
characteristics and traffic levels on interstate highways and other federally funded roads.
The 2009 tti, on the other hand, is based on directly observed time costs of travel on
highways and major arterial roads for a self selected sample of commercial vehicles and
the drivers of privately-owned vehicles. Unlike the tti index, our index is based on a
sample constructed to be broadly representative of all trips in privately-owned vehicles.
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Table A.1: Estimation of inverse-supply curves

(1) (2) (3) (4) (5) (6) (7) (8) (9)
OLS1 OLS2 OLS3 FE IV1 IV2 IV3 IV4 IV FE

Panel A. 50 largest MSAs for 2008

Mean c 1.415 1.396 1.396 1.396 1.293 1.283 1.293 1.223 1.252
(0.068) (0.068) (0.069) (0.073) (0.096) (0.089) (0.093) (0.085) (0.131)
[0.020] [0.002] [0.001] [0.022] [0.036] [0.036] [0.034] [0.039] [0.067]

Mean γ 0.421 0.416 0.415 0.411 0.336 0.330 0.337 0.318 0.336
(0.020) (0.019) (0.018) (0.021) (0.046) (0.042) (0.045) (0.042) (0.062)
[0.010] [0.001] [0.001] [0.016] [0.025] [0.025] [0.023] [0.026] [0.047]

Panel B. 50 largest MSAs for 2001

Mean c 1.385 1.384 1.380 1.351 1.326 1.318 1.328 1.260 1.264
(0.071) (0.067) (0.070) (0.067) (0.113) (0.121) (0.104) (0.132) (0.241)
[0.025] [0.002] [0.001] [0.029] [0.048] [0.048] [0.045] [0.050] [0.098]

Mean γ 0.412 0.407 0.406 0.394 0.349 0.344 0.350 0.341 0.350
(0.021) (0.021) (0.021) (0.023) (0.061) (0.064) (0.056) (0.066) (0.113)
[0.011] [0.001] [0.001] [0.020] [0.032] [0.031] [0.029] [0.033] [0.066]

Panel C. 50 largest MSAs for 1995

Mean c 1.189 1.196 1.186 1.133 1.115 1.110 1.111 1.065 1.044
(0.083) (0.080) (0.080) (0.090) (0.117) (0.120) (0.115) (0.124) (0.141)
[0.027] [0.006] [0.002] [0.029] [0.050] [0.049] [0.046] [0.051] [0.075]

Mean γ 0.380 0.375 0.373 0.350 0.335 0.332 0.331 0.326 0.320
(0.021) (0.023) (0.023) (0.028) (0.058) (0.059) (0.053) (0.061) (0.064)
[0.013] [0.001] [0.001] [0.022] [0.035] [0.034] [0.032] [0.036] [0.054]

Notes: Mean of the coefficients across all cities. Standard deviation of city coefficients in
parentheses. Mean of the standard deviation of city coefficients in squared parentheses. OLS

estimations in columns 1-4 and IV in columns 5-9.
Dependent variable: log minutes per kilometer for individual trips.
Controls: No control in column 1. Controls for household income and its square, driver’s
education and its square, age, dummies for males, blacks, and workers, and a quartic for the time
of departure in columns 2 and 5-8. 17 dummies for household income, four dummies for
education, age, dummies for males, blacks, hispanics, and workers, 23 dummies for the hour of
departure, 11 dummies for the month of departure, and a dummy for trip taken during the
weekend in column 3. Driver fixed effects in columns 4 and 9.
Instruments: Mean trip distance for trips of the same purpose in the same MSAs in column 5.
Same instrument but computed from the four most similar MSA in term of population in columns
6 and 9. Trip purpose in column 7 (8 categories) and column 8 (2 categories; commutes and other
work related trips, shopping, medical and dental, and school and church). See the text for a
discussion of instrument strength.
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Table A.2: Robustness checks of the estimation of inverse-supply curves

(1) (2) (3) (4) (5) (6) (7) (8)
mid. dist. 2 quartiles peak hours commutes PMSA

OLS IV OLS IV OLS IV OLS IV

Panel A. 100 largest MSAs for 2008
Mean c 1.258 1.022 1.390 1.190 1.352 - 1.413 1.331

(0.144) (0.466) (0.107) (0.182) (0.166) - (0.090) (0.142)
[0.003] [0.171] [0.003] [0.068] [0.004] - [0.001] [0.047]

Mean γ 0.372 0.251 0.413 0.352 0.394 - 0.420 0.350
(0.063) (0.243) (0.043) (0.089) (0.060) - (0.028) (0.071)
[0.001] [0.118] [0.001] [0.044] [0.001] - [0.001] [0.032]

Panel B. 50 largest MSAs for 2008
Mean c 1.269 1.032 1.386 1.180 1.381 1.101 1.417 1.303

(0.108) (0.433) (0.075) (0.123) (0.142) (0.831) (0.075) (0.094)
[0.002] [0.144] [0.002] [0.053] [0.003] [0.069] [0.001] [0.034]

Mean γ 0.371 0.196 0.402 0.329 0.393 0.291 0.411 0.323
(0.039) (0.228) (0.024) (0.061) (0.047) (0.283) (0.020) (0.041)
[0.001] [0.101] [0.001] [0.034] [0.001] [0.046] [0.001] [0.023]

Panel C. 50 largest MSAs for 2001
Mean c 1.311 1.093 1.372 1.262 1.349 - - -

(0.109) (0.355) (0.083) (0.116) (0.125) - - -
[0.004] [0.180] [0.003] [0.067] [0.005] - - -

Mean γ 0.388 0.198 0.395 0.334 0.385 - - -
(0.045) (0.191) (0.028) (0.058) (0.037) - - -
[0.002] [0.125] [0.001] [0.042] [0.001] - - -

Panel D. 50 largest MSAs for 1995
Mean c 1.042 0.890 1.190 0.992 1.162 - - -

(0.144) (0.358) (0.090) (0.155) (0.140) - - -
[0.008] [0.173] [0.005] [0.070] [0.009] - - -

Mean γ 0.312 0.208 0.363 0.323 0.347 - - -
(0.056) (0.186) (0.023) (0.073) (0.039) - - -
[0.002] [0.121] [0.001] [0.042] [0.002] - - -

Notes: Columns 1 and 2 censor the bottom and top quartile of distance per MSA and year.
Columns 3 and 4 only consider trips taken at peak hours. Columns 5 and 6 consider only
commutes and work-related trips. Columns 7 and 8 use primary instead of consolidated
metropolitan areas. Instruments in columns 6 are weak except for the largest cities in 2009.
Household location at the PMSA level is known only for 2009.
Mean of the coefficients across all cities. Standard deviation of city coefficients in parentheses.
Mean of the standard deviation of city coefficients in squared parentheses.
Dependent variable: minutes per kilometer for individual trips.
Controls: Controls for household income and its square, driver’s education and its square, age,
dummies for males, blacks, and workers, and a quartic for the time of departure in all columns.
Instruments: Mean trip distance for trips of the same purpose computed from the four most
similar MSA in term of population in columns 2, 4, 6, and 8.
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Table A.3: Ranking of the 50 largest MSAs, slowest at the top

2008 2008 2001 2001 1995 1995 Population
Index Rank Index Rank Index Rank rank

Miami-Fort Lauderdale, FL 0.88 1 0.87 1 0.92 2 12
Chicago-Gary-Kenosha, IL-IN-WI 0.91 2 0.94 2 0.90 1 3
Portland-Salem, OR-WA 0.94 3 1.04 18 1.09 27 21
Seattle-Tacoma-Bremerton, WA 0.94 4 0.95 3 0.99 8 14
Los Angeles-Riverside-Orange County, CA 0.95 5 0.98 7 1.00 11 2
New York-Northern NJ-Long Isl., NY-NJ-CT-PA 0.95 6 0.95 4 0.94 3 1
New Orleans, LA 0.96 7 0.98 9 1.04 14 44
Washington-Baltimore, DC-MD-VA-WV 0.96 8 0.98 9 0.98 6 4
Boston-Worcester-Lawrence-Low.-Brock., MA-NH 0.96 9 0.98 11 0.99 9 8
San Francisco-Oakland-San Jose, CA 0.96 10 1.01 13 1.02 13 5
Pittsburgh, PA 0.96 11 0.98 8 1.02 12 22
Houston-Galveston-Brazoria, TX 0.97 12 1.06 21 1.11 30 9
Sacramento-Yolo, CA 0.98 13 1.03 17 1.22 47 24
Philadelphia-Wilmington-Atl. City, PA-NJ-DE-MD 0.98 14 0.97 5 0.97 5 6
Tampa-St. Petersburg-Clearwater, FL 0.98 15 1.03 15 1.09 26 19
Orlando, FL 0.98 16 1.03 16 1.05 15 19
Baton Rouge, LA 0.98 17 1.12 35 1.14 38 46
Las Vegas, NV-AZ 0.98 18 0.98 10 1.16 42 23
Norfolk-Virginia Beach-Newport News, VA-NC 0.99 19 1.12 37 1.09 23 34
Phoenix-Mesa, AZ 1.00 20 1.04 19 1.10 29 13
Cleveland-Akron, OH 1.01 21 1.12 36 0.96 4 18
Austin-San Marcos, TX 1.03 22 1.07 22 1.08 21 33
Atlanta, GA 1.03 23 1.08 24 1.09 24 11
San Diego, CA 1.04 24 1.09 26 1.11 31 16
St. Louis, MO-IL 1.04 25 1.09 29 1.20 44 20
Detroit-Ann Arbor-Flint, MI 1.04 26 1.08 23 1.06 18 10
Dallas-Fort Worth, TX 1.04 27 1.08 25 1.12 33 7
Salt Lake City-Ogden, UT 1.05 28 1.10 30 1.09 25 36
Denver-Boulder-Greeley, CO 1.06 29 0.99 12 0.99 10 17
San Antonio, TX 1.06 30 1.11 32 1.15 40 27
Indianapolis, IN 1.06 31 1.04 20 1.12 34 30
Jacksonville, FL 1.07 32 1.15 42 0.99 7 40
Hartford, CT 1.07 33 1.14 41 1.26 49 43
Charlotte-Gastonia-Rock Hill, NC-SC 1.07 34 1.13 39 1.15 41 29
West Palm Beach-Boca Raton, FL 1.09 35 1.11 33 1.07 20 39
Columbus, OH 1.09 36 1.16 43 1.07 19 32
Minneapolis-St. Paul, MN-WI 1.10 37 1.11 34 1.12 32 15
Memphis, TN-AR-MS 1.10 38 1.25 48 1.14 36 41
Milwaukee-Racine, WI 1.10 39 1.09 28 1.06 16 31
Cincinnati-Hamilton, OK-KY-IN 1.10 40 1.01 14 1.05 17 26
Richmond-Petersburg, VA 1.11 41 1.19 45 1.18 43 47
Nashville, TN 1.12 42 1.10 31 1.22 46 37
Buffalo-Niagara Falls, NY 1.12 43 1.19 44 1.09 28 48
Raleigh-Durham-Chapel Hill, NC 1.12 44 1.21 46 1.22 45 35
Oklahoma City, OK 1.15 45 1.12 38 1.14 37 42
Rochester, NY 1.16 46 1.14 40 1.15 39 50
Kansas City, MO-KS 1.18 47 1.29 49 1.08 22 28
Greensboro–Winston-Salem–High Point,NC 1.19 48 1.24 47 1.25 48 38
Grand Rapids-Muskegon-Holland, MI 1.22 49 1.29 50 1.13 35 45
Louisville, KY-IN 1.22 50 1.09 27 1.29 50 49

Notes: Speed index constructed from the estimations reported in column 6 of table 3.
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In addition, the tti indices do not attempt to control for the simultaneity in the choice of
distance and speed.32

Aside from differences in the quality of the underlying data and methodology, the tti

indices are based on a different geography than we use (see Online Appendix A). While
neither geography is intrinsically preferable, this difference complicates the comparisons
of indices. For the 47 cities reported by tti also in our sample of the 50 largest msas, the
rank correlation of our preferred speed index is 0.69 for the inverse of the 2008 tti travel
cost index and 0.74 for 2009. For the 71 cities reported by tti also in our sample of the 100

largest msas, those correlations are 0.61 and 0.63 respectively.
As mentioned above, we also duplicate our analysis for primary statistical metropoli-

tan areas. Among the 50 largest pmsas, 17 are the core regions of larger msas, 11 are
secondary centers in larger msas, and 22 contain and coincide with their entire msa.
Changing the unit of observation makes it difficult to provide direct comparisons with
our msa based results. From the ranking of the 50 largest pmsas (not reported here) we
note the following features. Excluding New Orleans which is not among the largest 50

pmsas and thus no longer considered, the 10 slowest msas are all among the 14 slowest
pmsas. The four ‘entrants’ in this group are Nassau-Suffolk (ny), Bergen-Passaic (nj),
Fort Lauderdale (fl), and Oakland (ca), all secondary centers from slow msas: New
York, Miami, and San Francisco. More generally, secondary centers of slow msas tend
to be slow as well, much slower than their population size alone would suggest.33 This
explains why the rankings of the main urban centers are very close whether we use msas
or pmsas. The rule is not absolute though. A few secondary centres are much faster
than their main urban core. This is for instance the case of Gary (in) and Chicago. As
a result, after taking away Gary, Chicago turns out to be the slowest pmsa overtaking
Miami. The absence of exurban counties in large pmsas also implies that the slowest
pmsas are slower than their corresponding msa. For instance the speed index of Chicago
pmsa is 0.83 instead of 0.91 for the Chicago msa. Nonetheless the high correlation of the

32The tti indices are ‘linked-based’ as they measure the time cost of travel for specific
road segments. This makes the simultaneity slightly different relative to trip-based mea-
sures like ours. Still, the major roads and interstate highways over which the time cost of
travel is measured are relatively more likely to be used when travel is fast. Also, the tti

indices ignore local roads over which a significant fraction of travel occurs and for which
speed may vary differently across cities.

33The Jersey City (nj) pmsa is a case in point. Although too small to enter the group
of the 50 largest pmsas, it is actually the slowest pmsa in the entire country. This is
unsurprising. Large parts of this pmsa have a density higher than Manhattan without
its wide avenues, not to mention their heavily congested accesses to Manhattan by bridge
or by tunnel.

13



Table A.4: The determinants of speed, alternative years, samples, and variables

(1) (2) (3) (4) (5) (6) (7) (8)
SIV2 SIV2 SIV2 TTI2008 TTI2009 SIV2 SIV2 SIV2
2008 2001 1995 2008 2008 2008 2008 2008

log lane (total) 0.15a 0.066c 0.022 0.11a 0.032 0.066c

(0.037) (0.034) (0.049) (0.023) (0.022) (0.038)
log lane (interstate highways) 0.071a 0.069a

(0.014) (0.013)
log lane (major urban roads) 0.066b

(0.030)
log VTT -0.19a -0.12a -0.074 -0.17a -0.077a -0.11a -0.17a

(0.031) (0.032) (0.046) (0.019) (0.018) (0.012) (0.031)
log population -0.12a

(0.035)
Observations 50 100 100 71 78 100 98 98
R2 0.52 0.35 0.24 0.70 0.65 0.34 0.46 0.49

Notes: OLS regressions with a constant in all columns. Robust standard errors in
parentheses. a, b, c: significant at 1%, 5%, 10%. Dependent variables is in log in all
columns. In columns (4) and (5), we use the inverse of the TTI indices to be able to
interpret them as speed.

speed index between the pmsas that compose the largest msas suggests that msas are a
relevant level of analysis.

Appendix F. Robustness tests for determinants of speed

Table A.4 confirms our findings using different samples of msas, years of data, and
variables. In column 1 we duplicate our preferred estimation of column 6 of table 5 using
only the 50 largest msas and estimate slightly larger magnitudes for both the coefficient on
lanes and vehicle travel time. The R2 is also higher given the greater precision of our index
in larger msas. In columns 2 and 3, we also duplicate our preferred regression from table
5 but use 100 msas for 2001 and 1995, respectively. While the results for 2001 are close to
those for 2008, the coefficient on lanes for 1995 is insignificant and the R2 is much lower.
In columns 4 and 5, we use a log speed index computed from the 2008 and 2009 tti travel
cost indices, respectively, as dependent variables. The results for the 2008 tti index are
close to those of our preferred estimation. With the 2009 tti index, the coefficient on lanes
is small and insignificant. Column 6 substitutes population for vtt finds results similar
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to the other specifications. In column 7, we use log interstate highway lane kilometers
as a measure of roads. Excluding smaller roads leads to a smaller coefficient. Finally in
column 8 we control separately for log lane kilometers of interstate highways and major
urban roads. We find a marginally higher coefficient for interstate highways than for
major urban roads which is consistent with the more important capacities and the greater
speed of interstate highway lanes relative to lanes of major urban roads. Importantly,
the sum of these two coefficients is very close to the coefficient for both types of roads
considered jointly in our preferred regression.

Table A.5 further confirms our findings using alternative estimation techniques. As
argued above, vehicle travel time is expected to be determined simultaneously with travel
speed. To deal with this problem, in column 1 we instrument for vtt using population. As
might be expected, population is a strong predictor of vtt. The estimated coefficient on
vtt is −0.12, only marginally smaller in magnitude than (and statistically undistinguish-
able from) its ols counterpart. One may worry that the exclusion restriction associated
with this regression is not satisfied since population in 2008 may be correlated with traffic
speed through variables other than roads and vtt. This worry may not be as important as
it seems. First, Duranton and Turner (2012) document that interstate highways have only
a modest effect on urban growth. Second, to explore this question further, in column 2 we
duplicate the regression of column 1 but also control for population growth between 1980

and 2008. The results remain the same. To confirm this finding, in column 3 we use a more
exogenous proxy for urban growth, namely expected population growth between 1980

and 2000. This proxy is computed by interacting the sectoral composition of employment
in msas in 1980 and employment growth for these sectors between 1980 and 2000.34 The
results are still very close to the previous estimates.35

In column 4, we turn to the simultaneous determination of roads and travel speed.
Unfortunately, we do not know of any good exogenous predictor of lane kilometers of
both interstate highways and major urban roads. However, we can follow Duranton
and Turner (2011, 2012) and use the 1947 plan of interstate highways and a map of
1898 railroads to predict contemporaneous lane kilometers of interstate highways in us

msas. Online Appendix A provides further details about the construction of these two
instruments. As can be seen from the results, these two instruments are good predictors

34This variable is inspired by Bartik (1991) and further details about its construction can
be found in Duranton and Turner (2011).

35Overall the finding of a slightly less negative effect of travel time on speed in tsls

relative to ols after controlling for population growth is consistent with higher travel
speed having a modest positive effect on population.
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Table A.5: The determinants of speed, 100 MSAs in 2008 IV regressions

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
TSLS TSLS TSLS TSLS TSLS TSLS TSLS TSLS TSLS LEVPET

log lane 0.075a 0.081a 0.077b 0.090c

(0.040) (0.041) (0.039) (0.048)
log lane (IH) 0.086a 0.090a 0.084a 0.082a 0.086a 0.079a

(0.024) (0.024) (0.025) (0.024) (0.023) (0.025)
log lane (MRU) 0.066b 0.057c 0.056c 0.044

(0.030) (0.032) (0.029) (0.032)
log VTT -0.12a -0.11a -0.096b -0.12a -0.18a -0.16a -0.11a -0.17a -0.14a -0.11a

(0.035) (0.036) (0.038) (0.020) (0.035) (0.039) (0.019) (0.033) (0.040) (0.025)

Instrumented
log VTT X X X X X X
log lane (IH) X X X X X X

Instruments
log pop. 2008 X X X X X X
log highways 1947 X X X X X X
log railroads 1898 X X X X X X

Controls
∆1980−2008 log pop. X
E∆1980−2000 log pop. X X X
log pop. 1950 X X
log pop. 1920 X X
Observations 100 100 100 94 94 94 94 94 94 300
Overid. p-value - - - 0.20 0.26 0.43 0.20 0.24 0.46 -
First-stage stat. 567 494 450 32.3 32.4 28.0 21.4 21.1 18.5 -

Notes: Regressions with a constant in all columns. Robust standard errors in parentheses.
a, b, c: significant at 1%, 5%, 10%. Dependent variables is log SIV2 in all columns. The
first stage statistic is a Kleibergen-Paap F-statistic for robust estimation. They are always
above the Stock-Yogo critical threshold at 10%.

of contemporaneous lane kilometers of interstate highways and pass the appropriate
overidentification test. The coefficient on lane kilometers of interstate highways is 0.086.
This is slightly above its corresponding ols estimate of 0.071 in column 7 of table A.4. In
column 5, we estimate the same regression but add lane kilometers of major urban roads
as control. The sum of the two lane coefficients is 0.156, slightly above the sum of the
corresponding ols estimates of 0.135 (in column 8 of table A.4). Again, our instruments
could be correlated with travel speed through the error term. Cities that received more
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railroads during the 19th century or cities that were allocated more roads in 1947 may
be different in systematic ways. In particular, they were bigger at the time and thus
may be spatially organised in a different way and may have a different transportation
network relative to more recent cities. In turn, that might affect travel speed. To preclude
these correlations, in column 6 we introduce 1920 population (the closest year to 1898

for which we can get population estimates), 1950 population, and expected population
growth between 1980 and 2000 as before. Introducing these controls in column 6 changes
close to nothing to the estimates of column 6. The marginally significant coefficient on
major urban roads is now marginally insignificant.

In columns 7 to 9, we repeat the same strategy as in columns 4 to 6 but now instrument
for both lane kilometers of highways and vehicle travel time. The results remain the same
as before. Finally in column 10, we use a completely different instrumenting approach
which makes use of all three cross-sections of data (and changes in the roadway prior to
1995) and implement the estimation technique for productivity suggested by Levinsohn
and Petrin (2003). It is true that, unlike firms, cities do not invest in roads in response to
positive demand shocks to maximize profit (be it only because roads are funded mainly
by the federal government). Nonetheless we expect road provision to respond to changes
in travel conditions. While suggestive, our Levinsohn-Petrin results are very close to our
ols and tsls estimates.
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